h

SORBONNE
UNIVERSITE

Network reconfiguration and management in 6G
telecommunication networks

by

Theodoros Tsourdinis

Supervisors:

Serge Fdida, Professor, Sorbonne Université

Thanasis Korakis, Professor, University of Thessaly

Committee:

Serge Fdida, Professor, Sorbonne Université (Supervisor)
Thanasis Korakis, Professor, University Of Thessaly (Supervisor)
Walid Dabbous, Professor, INRIA (Reviewer)
Thi-Mai-Trang Nguyen, Professor, Universite Sorbonne Paris Nord
(Reviewer)

Jim Kurose, Professor, University of Massachusetts (Examiner)
Anne Fladenmuller, Professor, Sorbonne Université (Examiner)

Paris Flegkas, Assistant Professor, University of Thessaly (Examiner)

October 2025

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Network reconfiguration and management in 6G

telecommunication networks

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Theodoros Tsourdinis

w) SCIENCES
SORBONNE
UNIVERSITE

v/

October 2025

UNIVERSITY OF THESSALY
SCHOOL OF ENGINEERING
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

Reconfiguration et gestion des réseaux de

téelécommunication 6G

These présentée pour 1’obtention du diplome de Doctorat

Theodoros Tsourdinis

SORBONNE
UNIVERSITE

October 2025

111

[TANEIIIXTHMIO OEZXAAIAX
ITOAYTEXNIKH £XOAH
TMHMA HAEKTPOAOT' QN MHXANIKQN KAI MHXANIKQN YITOAOTTETQN

AVVOHIKY] TPOGOPROYT] KO OLOYEIPLOT] TAETIKOIVOVIOK®OV

OIKTVMV 6MG YeVIdg

Awotpin n omoio vToPANONKE YO0 TN HEPIKY| EKTANPOGT

TOV VTOYPEDGEMV OTOKTNONG TOV AOOKTOPIKOD AITADUOTOG

®c60mpog Toovpoivng
w SCIENCES
SORBONNE
UNIVERSITE

Oxtopprog 2025

fh
SORBONNE
UNIVERSITE

Network reconfiguration and management in 6G telecommunication

networks

PhD Dissertation

Theodoros Tsourdinis

Advisory committee

Serge Fdida, Professor, Sorbonne Université (Supervisor)

Thanasis Korakis, Professor, University Of Thessaly (Supervisor)

Examination committee

Walid Dabbous, Professor, INRIA (Reviewer)

Thi-Mai-Trang Nguyen, Professor, Universite Sorbonne Paris Nord (Reviewer)
Paris Flegkas, Assistant Professor, University of Thessaly (Examiner)

Jim Kurose, Professor, University of Massachusetts (Examiner)

Anne Fladenmuller, Professor, Sorbonne Université (Examiner)

October 2025

vil

DISCLAIMER ON ACADEMIC ETHICS
AND INTELLECTUAL PROPERTY RIGHTS

Being fully aware of the implications of copyright laws, I expressly state that this PH.D.
dissertation, as well as the electronic files and source codes developed or modified in the
course of this thesis, are solely the product of my personal work and do not infringe any
rights of intellectual property, personality and personal data of third parties, do not contain
work / contributions of third parties for which the permission of the authors / beneficiaries is
required and are not a product of partial or complete plagiarism, while the sources used are
limited to the bibliographic references only and meet the rules of scientific citing. The points
where I have used ideas, text, files and / or sources of other authors are clearly mentioned
in the text with the appropriate citation and the relevant complete reference is included in
the bibliographic references section. I also declare that the results of the work have not been
used to obtain another degree. I fully, individually and personally undertake all legal and
administrative consequences that may arise in the event that it is proven, in the course of

time, that this thesis or part of it does not belong to me because it is a product of plagiarism.

The declarant

Theodoros Tsourdinis

X

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my supervisors, Pro-
fessor Thanasis Korakis from the University of Thessaly and Professor Serge Fdida from
Sorbonne University.

Professor Korakis gave me the invaluable opportunity to enter into the world of research
and pursue my doctoral as part of his distinguished team at NITLab. Throughout this jour-
ney his support in broadening my research perspectives have been invaluable and I am truly

greatful for his guidance and mentorship.

Professor Fdida provided exceptional hospitality and outstanding guidance throughout
my research period at Sorbonne and the LIP6 laboratory. His visionary thinking, openness
to new ideas, and constant encouragement played a pivotal role in my evolution as a re-
searcherer. He offered me not only the freedom to explore various research topics but also
continuous access to a rich ecosystem of academic collaboration, training programs, and in-
ternational exposure. Working under his supervision and mentorship significantly expanded
my perspective on how to approach advanced research projects in a collaborative and im-
pactful manner.

I would like to sincerely thank Dr. Nikos Makris, who supported my entrance into the
research world. As a highly skilled postdoctoral researcher, he played a key role in shaping
both the direction and quality of my doctoral research. His expertise and ideas significantly
influenced my work. In addition to his scientific contributions, he offered consistent support
and mentorship throughout my PhD journey, for which I am truly grateful.

I would also like to extend my sincere appreciation to my collaborators and colleagues
at NITLab: Ilias Chatzistefanidis, Sokratis Christakis, Vasilis Zalokostas, Dimitris Kefalas,
Apostolis Prassas, Katerina Kyriakou, Ipporatis Koukoulis and Efraim Pavlidis as well as
the postdoctoral researchers including Virgilios Passas, Apostolis Apostolaras, Ilias Syrigos,

Kostas Chounos and Kostas Choumas. Additionally, my heartfelt thanks to my colleagues

xi

xii

at LIP6: Hassane Rahich, Frederic Vaissade, Albert SU, Taha Mohsen, Bilel Zaghoudi, and
Anastasios Giovanidis.

A special acknowledgment to Emilie Mespoulhes for her invaluable administrative as-
sistance and essential support during my relocation to Paris. Without her timely and diligent
help, my transition to Paris and progression through the doctoral program would have been
significantly more challenging.

I also express my gratitude to the administrative team at NITLab, specifically Stavroula
Maglavera, Katerina Arvaniti, Sissy Magouritsa, Olina Stergiopoulou, and Stergios Avlonitis,
for their support and assistance with administrative matters.

My heartfelt gratitude goes to my family: my parents, Georgios Tsourdinis and Sofia
Mavromatopoulou, and my sister, Anna Tsourdini. Their endless sacrifices, financial support,
relocations, and emotional resilience provided the foundation necessary for me to achieve this
significant milestone in my educational journey.

I would also like to deeply thank my close friends who stood by me in both joyful and chal-
lenging times: Aggelos Argyriou, Dimitris Monias, [lias Chatzistefanidis, Kyriakos Kaller-
gis, Thanasis Panagos, Serafeim Gikas, Sokratis Christakis and all my other dear friends.

Above all, I am deeply thankful to Jesus Christ.

PhD Dissertation

Network reconfiguration and management in 6G telecommunication

networks

Theodoros Tsourdinis

Abstract

Fifth-generation (5G) telecommunication networks promise unprecedented improvements
in connectivity, offering ultra-high data rates, ultra-reliable low-latency communication (URLLC),
and massive connectivity of diverse devices. These capabilities are essential for enabling
transformative applications such as autonomous vehicles, remote surgery, industrial automa-
tion, and the Internet of Things (IoT). However, despite the theoretical advances, practical
deployments frequently fail to meet anticipated performance benchmarks. This performance
gap primarily arises from simplistic assumptions regarding user mobility patterns, static re-
source allocation strategies, and limited adaptability to changing network conditions. As
the industry transitions toward sixth-generation (6G) networks, addressing these challenges
through dynamic reconfiguration and advanced management mechanisms becomes critically
important.

This thesis investigates fundamental questions related to dynamic resource allocation,
seamless service continuity during user mobility, and robust security in highly automated
edge network environments. Specifically, the research addresses the following key prob-
lems: how can Artificial Intelligence and Machine Learning (AI/ML) techniques be leveraged
to dynamically enhance and optimize resource allocation within the Radio Access Network
(RAN)? How can low-latency access be continuously maintained for mobile users within
Multi-Access Edge Computing (MEC) frameworks? Lastly, how can the security and re-
silience of edge network infrastructures be guaranteed against evolving threats such as Denial
of Service (DoS) attacks?

To tackle dynamic resource allocation challenges, we designed and incorporated an MLOps
platform within the 5G architecture, which collects user and radio data through a custom Net-

work Data Analytics Function (NWDAF) module. By employing deep learning techniques,

xiil

Xiv Abstract

we predict user demands, application interactions, and radio conditions, enabling proactive
reallocation of Physical Resource Blocks (PRB). This approach demonstrates a successful
transition from traditional network-aware applications—where services must adapt to net-
work conditions—to a novel service-aware paradigm, wherein the network autonomously
aligns itself with real-time application needs, significantly reducing resource over- and under-
provisioning.

To ensure seamless service continuity in MEC environments, we introduced a heteroge-
neous connectivity framework integrating both 3GPP and non-3GPP technologies. We devel-
oped a service migration controller that dynamically selects optimal Radio Access Technol-
ogy (RAT) paths based on real-time radio conditions, that also migrates edge services closer to
user locations. Additionally, we proposed and implemented a Deep Reinforcement Learning
(DRL)-based migration approach, utilizing multi-cell Round-Trip Time (RTT) measurements
to proactively reposition services and maintain continuous, low-latency access during user
mobility. Extensive experimental evaluations validated the effectiveness of this approach,
demonstrating uninterrupted high-quality user experiences.

Addressing network security, we integrated a robust anomaly detection mechanism within
an Open RAN architecture. This system identifies and mitigates real-time security threats
such as DoS attacks, dynamically adjusting resource allocations, and manages the users to
maintain network integrity and service quality. The synergy of dynamic resource alloca-
tion and security enhancements significantly improves the resilience and reliability of next-
generation network infrastructures.

Comprehensive experimental evaluations conducted in realistic testbed environments high-
light substantial improvements across multiple performance metrics, including reduced la-
tency, increased throughput, optimized resource utilization, and enhanced energy efficiency.
These results demonstrate the practical viability and efficacy of the proposed methodologies,
providing robust foundations for addressing similar challenges anticipated in emerging 6G

network ecosystems.

Keywords

Beyond 5G; service-aware; network slicing; Multi-access Edge Computing; Beyond 5G;

Cloud-Native network; AI/ML; OpenAirlnterface; Kubernetes;

Adaktopikn Aatpifin

AVVOPIKT] TPOGUPLOYT] KOl OLOYEIPLOTN TAETIKOLVOVIOK®OV SIKTVOV 61

YEVLOG

Oc00mpog Toovpdivng

Iepiinyn

Ta mAemikovoviakd diktva Téumtng yeviag (5G) vmooyovtal TpOToPAVELS PEATIOGELS
OT1 GLVOEGIUATNTO, TPOGPEPOVTOS VYNAOVG PLOLOVS dESOUEVDV, EEUPETIKA OEIOTIGTES EML-
Kowwvieg yapning kabvotépnong (URLLC) kot palikn dtachvoeon ETEPOYEVOV CUGKEVMV.
Ot duvatdTTEG AVTEG ATOTEAOVV KPIGILO KATAADTN Yo TNV LTOGTNPIEN EPAPLOYDV OTMC
T AVTOVOLO, OYNLLOLTO, 1) OTTOUAKPUGUEVT] XEPOVPYIKT], O PLOUNYOVIKOS OVTOUOTIOUOG Kot
10 Awdiktvo tov Hpayudtov (IoT). Q6t660, 01 TPAYUATIKES EYKATAGTACELS GUYVEA OEV V-
TATOKPIVOVTOL GTIG OAVOUEVOUEVESG ETOOCELS, £E0UTIOG ATAOTKMY VITOOEGEWV TYETIKA e TNV
KWVNTIKOTNTO TOV YPNOTOV, GTUTIKNG KOTAVOUNG TOP®V KO TEPLOPLGUEVIC TPOGAPLOYNG CE
duvapkd mepBdAlovta. Avtég ot aduvapies Kafiotovv avaykaio TNV avantuén Tpornyué-
VOV INYOVIGULOV SUVOUIKNAG OVOSLOUHOPPMOOTG Kol E0OLOVGS dtayeiptong, kabdg 1 fropunyavia
nmpogToaleton ya o diktvo ktng yevidg (6G).

H mapodoa dwatpipn depeuvd Bepedon epoTHUATO TOV 0POPOVV TN SVVAUIKT KOTO-
VOUN TOPWV, TN GLVEXT] TOPOYT VIINPEGLAOV GE KIVNTOVG YPNOTES KL TNV EVIGYLOT TNG AGPA-
AEl0G G€ OVTOUATOTOMUEVO TEPPAAAOVTO OIKTOMV. ZVYKEKPIUEVA, 1) EPEVVA ATOVTH GTO.
e€ng kplowa epotpata: Tlog propodv ot teyvikég Teyvntig Nonpoosvvng kot Mryoavikng
Mabnong (AI/ML) va a&tomomBovv yia t dvvopikn BEATIoTOToINoN TG KOTOVOUNG TOP®V
o010 Aiktvo IIpdcsPaong Acvpupatov Mécov (AITAM) (RAN); Tloc pmopet vo drotnpeiton
ouvveyng TpocPfacm yoUning kabvotépnong yo Kivntovg ypnoteg o [epipdirovia Yroro-
ywotikng loyvoc otnv Akpn tov Aktoov (ITYIAA) (MEC); Télog, madg pumopet va dStac@ait-
oTel 1 AoPAAELD Kot aVOEKTIKOTNTO TOV THAETIKOWVOVIOK®OV SIKTVMOV EVOVTL OTELDY OIS 0L
embéaeig apvnong vanpeoioc (EAY) (DoS);

INo v Bértiom katavoun mopwv oto AITAM, avartdlope o Thatedpua Agitovp-

yung Awayeipitong Mnyovikng MéOnong (MLOps) evoopatopévn oty apyttektoviky 5G,

XV

xvi Hepiinyn

N omoia cLAAEYEL dedopéva xpnotdv Kot AITAM pécm pag mpocaplocévng Asttovpyiog
Avarvtikng Enegepyacioc Aedopévov Aiktvov (NWDAF). Me 1t yprion poviédmv Padiig
naonong, tpoPArénovpe t RINon twv xpnoT®V, TS cLvnkeg Tov AITAM Kot TIg ATUTGELS
TOV EPAPUOYADV, ETITPETOVTAS TNV TPOANTTIKY Kol SUVALLIKT KOTOvoUn TV topwv tov RAN.
Avt 1 Tpocéyyion oNUOTOd0TEL TN HETAPaon amd Eva TapadoGLoKd LOVTEAO TPOGOPHOYNG
TOV EPUPUOYDV 6TO OiKTVLO (network-aware) ce £vo KavoTOUO LLOVTEAO TPOGAVATOAMGUEVO
OTIG LANPEGiES (service-aware), 6To 0010 TO 1510 T0 dIKTVO TPOGAUPUOLETOL OTIC AVAYKES TV
EQOPUOYDV GE TPAYLATIKO ¥POVO, LELDOVOVTOG OPUCGTIKE TNV VIEP- 1] VITO-KATAVOLT TOPWV.

[Na v e&acpdhon cuveyobg tpdcPaong yauning kabvotépnong oe ITYIAA, avomto-
EQLe pio TAOTOOPLLOL ETEPOYEVOVS GUVIEGIUATNTAG TOV EVOMUOTAOVEL TEXVOAOYieg 3GPP kat
un-3GPP. Anmovpynoape évav gAeykti SUVAIIKNG HETEYKATAGTOONG LIINPESLOV (Service
Live Migration), mov emAéyel 1t BéAtiot Teyxvoroyia I[IpdcPaong oto AcHpuato Méco
(RAT) pe Baon T1g mparypotikég cuvOnKeg Tov SIKTHOL Kot a&lomotel Evov alyopifuo Babidc
Evioyvtikng Mabnong (DRL) yuo v mpoAnmtikn peteykatdotoon tov vanpesiwv MEC mo
KOVTé 0ToVG ¥pNotec. Ot mepapatikég aSloroynoelg emPePaimoay T onuavtiky Petioon
G KaBLoTEPNONE TPOGPAOTG KO TNG GLVEXELNG TMV VINPECIMOV KATA TNV KIVNTIKOTNTO TOV
APNOTOV.

TéLog, evoopaT®oape EVav 1oxLVPO UNYAVICUO aViXVELONG AVOUOAMOV GTNV OPYLTEKTO-
vikn avotytov AITAM (O-RAN), o omoiog avayvopiletl kot aviipuetomilel oneilés OTme N
EAY og mpaypatikod ypévo, dtacpaiilovtag Ty akepotdTnTO KOl T GUVEYN TodTNTA TOV
VNPECIDV.

Ot mepapatikés a&loAoYNOELS KOTASEIKVOOUV ONUAVTIKEG PEATIOGELS 68 kaBvoTépnon,
SHeETAY®YN, BEATIOTN 0EI0TOINGT TOPMOV KOl EVEPYELNKT] OITOSOTIKATNTO, EMPERALDVOVTOC
™ PLOcIUOTNTA TOV TPOTEWVOUEVOV ADGEWDV, Kol TAPEXOVV GTEPEES PAGELS Y100 TNV OVTILET®-

TIOT AVTIGTOLY®V TPOKANGEMY oTa enepyOpeva dikTva 6G.

Keywords

Beyond 5G; service-aware; network slicing; Multi-access Edge Computing; Beyond 5G;

Cloud-Native network; AI/ML; OpenAirlnterface; Kubernetes;

Thése de Doctorat

Reconfiguration et gestion des réseaux de télécommunication 6G

Theodoros Tsourdinis

Résumé

Les réseaux de télécommunications de cinquieme génération (5G) promettent des avancées
sans précédent en maticre de connectivité, offrant des débits de données extrémement élevés,
des communications ultra-fiables a tres faible latence (URLLC) ainsi qu’une connectivité
massive pour une diversité d’appareils. Ces caractéristiques sont essentielles pour soutenir
des applications critiques telles que les véhicules autonomes, la chirurgie a distance, I’automatisation
industrielle et I’Internet des objets (IoT). Cependant, malgré leurs performances théoriques
remarquables, les déploiements pratiques peinent souvent a atteindre les indicateurs de per-
formance attendus, principalement en raison d’hypothéses simplistes sur les schémas de
mobilité des utilisateurs, d’une allocation statique des ressources réseau, et d’une capacité
d’adaptation limitée face aux conditions changeantes du réseau. A mesure que I’industrie
évolue vers les réseaux de sixiéme génération (6G), il devient crucial de résoudre ces défis
par des mécanismes avancés de reconfiguration dynamique et de gestion.

Cette these examine des questions fondamentales liées a I’allocation dynamique des ressources,
a la continuité transparente des services lors de la mobilité des utilisateurs, ainsi qu’a la
sécurité robuste des environnements réseau hautement automatisés. Plus précisément, elle
répond aux problématiques suivantes : comment les techniques d’intelligence artificielle
et d’apprentissage automatique (AI/ML) peuvent-elles €tre exploitées pour optimiser dy-
namiquement 1’allocation des ressources au sein du réseau d’acces radio (RAN) ? Comment
peut-on maintenir en permanence un acces a faible latence pour les utilisateurs mobiles dans
des environnements Multi-Access Edge Computing (MEC) ? Enfin, comment assurer la sécu-
rité et la résilience des infrastructures réseau pilotées par I’IA face a des menaces évolutives
telles que les attaques par déni de service (DoS) ?

Pour résoudre les défis liés a I’allocation dynamique des ressources, nous avons congu
et intégré une plateforme MLOps au sein de 1’architecture 5G. Celle-ci collecte les données

utilisateurs et radio via une fonction analytique réseau personnalisée (NWDAF). En utilisant

xvii

XViii Résume

des techniques d’apprentissage profond (deep learning), nous prédisons les besoins des util-
isateurs ainsi que les conditions radio, permettant une réallocation proactive des ressources
basée sur ces prédictions. Cette approche permet une transition réussie du mod¢le traditionnel
ou les applications doivent s’adapter aux conditions du réseau (network-aware), vers un nou-
veau paradigme orienté service (service-aware), dans lequel le réseau s’adapte automatique-
ment aux besoins applicatifs en temps réel, réduisant ainsi significativement la surallocation

et la sous-allocation des ressources.

Pour garantir la continuité des services dans les environnements MEC, nous avons développé
un cadre de connectivité hétérogéne intégrant a la fois les technologies 3GPP et non-3GPP.
Nous avons également congu un controleur de migration de services MEC capable de sélec-
tionner dynamiquement le meilleur chemin de technologie d’accés radio (RAT), en utilisant
un modele basé sur I’apprentissage par renforcement profond (DRL). Ce mode¢le exploite des
mesures Round-Trip Time (RTT) provenant de multiples cellules pour relocaliser proactive-
ment les services, garantissant ainsi un acces a faible latence constant lors des déplacements
des utilisateurs. Des évaluations expérimentales approfondies ont confirmé ’efficacité de

cette approche, assurant une expérience utilisateur continue et de haute qualité.

Concernant la sécurité réseau, nous avons intégré un mécanisme robuste de détection
d’anomalies au sein d’une architecture Open RAN. Ce mécanisme identifie et atténue en
temps réel les menaces telles que les attaques par déni de service (DoS), en ajustant dy-
namiquement les ressources réseau pour préserver 1’intégrité et la qualité du service. L’intégration
de cette sécurité a I’allocation dynamique des ressources améliore significativement la résilience

et la fiabilité des infrastructures réseau pilotées par I’'IA.

Des évaluations expérimentales complétes menées dans des environnements réalistes dé-
montrent des améliorations substantielles dans plusieurs indicateurs de performance clés,
notamment une réduction de la latence, une augmentation du débit, une optimisation de
I’utilisation des ressources et une efficacité énergétique accrue. Ces résultats valident la fais-
abilité pratique et I’efficacité des méthodologies proposées, établissant ainsi des bases solides

pour relever des défis similaires et plus complexes dans les futurs réseaux 6G.

En résumé, cette these contribue significativement a la réalisation d’infrastructures de
télécommunications flexibles, sécurisées et intelligentes, réduisant efficacement 1’écart entre

les capacités théoriques et les performances opérationnelles réelles des réseaux.

Résume XiX

Keywords

Beyond 5G; service-aware; network slicing; Multi-access Edge Computing; Beyond 5G;

Cloud-Native network; AI/ML; OpenAirlnterface; Kubernetes;

List of Publications

Journals

[J1] Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, Thanasis Korakis, Navid
Nikaein, Serge Fdida. Service-aware real-time slicing for virtualized beyond 5G
networks. Computer Networks: The International Journal of Computer and Telecom-

munications Networking, Volume 247, Issue C (COMNETS), 2024, ACM []1].

Conferences

[C1] Theodoros Tsourdinis, Nikos Makris, & Thanasis Korakis. Experimental evaluation
of a Follow-me MEC Cloud-Native 5G network. IEEE 4th 5G World Forum (SGWF),
2021, IEEE [2].

[C2] Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, & Thanasis Korakis. Al-
driven Service-aware Real-time Slicing for beyond 5G Networks. IEEE Interna-

tional Conference on Computer Communications (Infocom), 2022, IEEE - Repro-

ducibility Award [3].

[C3] Theodoros Tsourdinis, Nikos Makris, Serge Fdida & Thanasis Korakis. DRL-based
Service Migration for MEC Cloud-Native 5G and beyond Networks. 10th IEEE

International Conference on Network Softwarization (NetSoft), 2023, IEEE [4].

[C4] Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, Serge Fdida. Demystifying
URLLC in Real-World 5G Networks: An End-to-End Experimental Evaluation.
IEEE Global Communications Conferences (Globecom), 2024, IEEE [5].

[C5] Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, Serge Fdida. AI-Driven Net-
work Intrusion Detection and Resource Allocation in Real-World O-RAN 5G Net-

XX1

xXxii Résume

works. The 30th Annual International Conference on Mobile Computing and Network-

ing (Mobicom), 2024, ACM. [6]

[C6] Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, Serge Fdida. Real-World Re-
inforcement Learning for Energy-Efficient DL Power Management in Beyond 5G

RAN. IEEE Infocom (Under Review), 2026, IEEE.

In addition, our research efforts within the same period led to the following publications

that are not directly related to this thesis:

Conferences

C1 Nikos Makris, Virgilios Passas, Apostolos Apostolaras, Theodoros Tsourdinis, Ilias
Chatzistefanidis & Thanasis Korakis. On enabling remote hands-on Computer Net-
working Education: the NITOS testbed approach. 2023 IEEE Integrated STEM
Education Conference, (ISTEM), 2023, IEEE [[7].

C2 Socratis Christakis, Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, Serge Fdida.
Evaluation of User Plane Function Implementations in Real-World 5G Networks.

IEEE International Conference on Computer Communications (Infocom), 2024, IEEE

8],

Table of contents

3

LList of Publications

[Table of contents

List of tables

[Abbreviations

=3

Introduction

[[.1 Evolution towards 6G Networky

[[.2 Management and Operation Challenges for 6G Networky

[1.3 Thesis Contributions to 6G Management and Operations

[[.4 Other Research Contributions (Out of Scope of This Thesis)

(1.5 Thesis Structurd o v o e e

Background

2.1 S5G/NRI. . . .o
R.1.1 _ Architecture OVEIVIEW o v v v v oo
.12 RANProtocol Stackl
R2.1.3 RAN Functional Splits

xiii

XV

Xvii

xxi

xxiii

xxvii

Xxxi

xxxiii

XX1V Table of contents
2.1.4 RAN Resource Allocation/Slicing 22

2.1.5 RANDupplexing o v v i 25

R.1.6 Software-Defined RAN 28

R.1.7 Key Core Network Functiong 32

2.2 Multiple Access Edge Computind 35
R2.2.1 Introduction|. 35

P22 Cloudvs Edgd 36

2.2.3 Placing MEC in Telecom Networks 37

P.2.4 MEC Type Deployment - Virtualization Technologies 40

R.2.5 Edge Service Live Migration 41

2.3 Artificial Intelligence and Machine Learning Introduction 44
2.3.1 Machine Learning (ML) 45

2.3.2 Deep Learning (DL) and Neural Networky 47

P2.3.3 Reinforcement Learning 49

2.4 Experimental Tools and Methody 52
4.1 SLICESRI-Testbeds 52
R.4.2 5G Experimentation Tool§ 53

2.4.3 Kubernetes Ecosystem| 55

B Mobility Aware Edge Service Migration for 6G Networks 63
B.1 Introduction v v e 63
B.2 Related Workl 64
B.3 System Architecture. 65
B.3.1 Management and deployment of the network functions 66

B.3.2 RAN Functionsand MEQ 67

B.3.3 Follow-me MEC extensions« v v v v v v v .. 67

B.4 Bvaluation 71
B.5 Conclusiono 75
4 Deep Reinforcement Learning based Service Migration for 6G Networks 77
U1 Introduction o e 77
B2 Related Workl 79
M3 System Architecture. 81

Table of contents XXV
#.3.1 _ Architecture of the Edge Infrastructurg 82

#.3.2 Management & Deployment of Network Functiong 83

#.3.3 Architecture of the DRL Migration Environment 85

B4 Bvaluationo 92
M5 Conclusiono i 95

5 Service Aware Network Slicing for 6G Networks 97
5.1 Introduction 97
5.2 Related Workl 100
5.3 System Architecture. 104
5.3.1 Management and deployment of the network functiong 105

5.3.2 Application-aware AUML Uni{ 107

5.3.3 MLOps AI-ML Unit Architecture 118

5.4 Bvaluation 122
5.4.1 Model Comparison| oo 122

5.4.2 Experiment Bvaluation| 124

5.4.3 Online - Distributed Training 126

5.5 Limitations and Discussions e i 129
B.6 Conclusion i i 130

6 Al-Driven Attack Mitigation using Slicing for 6G Networks 131
6.1 Introduction 131

6.2 Related Workl 132
6.2.1 General Architecture and Management of the network functions . . 134

6.2.2 Dataset and Machine Learning 136

6.2.3 Anomaly Detection and Countermeasure§ 137

6.3 Experimental Evaluation 138
6.4 Conclusion 143
[7__Conclusions 145
7.1 Summary of Contributions 145
7.2 Perspectives for Future Workl 147
[7.2.1 Lessons Learned and Outlook 148

XXVi Table of contents

151

List of figures

.1 _Hexa-X 6G research focus areas building upon 5G [14] 4
[[.2 Huawei’s vision on 6G: from 5G to Al-centric 6G [15] 4
2.1 SA and NSA Architecture o o v v i 16
.2 5GNR architecturd o v v e e 17
2.3 LTEarchitecture o v vt 18
2.4 5GRadio Protocol Stackl 20
R.5 Disaggregated SGNR Architecturd 21
2.6 Split options in the Disaggregated SGNR Architecturg 22
2.7 OFDM Symbols in Frequency and Time domain] 23
P.8 TDD periodicities with different configurations) 27
2.9 Impact of TDD cycle duration on latency (RTT) and RLC buffer occupancy|

in an OpenAirInterface 5SG testbed| 28
2.10 SDN Architecturd 29
R.11 The O-RAN Architecture] 31
.12 E2 Packet Structurel. 32
2.13 NWDAF Architecture in the 5G System) 34
2.14 Multi-Cell RTT reporting in LMF| 35
.15 MEC on the SGi interface] 38
.16 MEConthe Sl interface] 38
2.17 Placing MECnexttoDUs| 39
2.18 MEC Deployments in beyond 5G Networks! 39
2.19 VMs vs Containers) o o o 41
2.20 Pre-Copy vs Post-Copy Migration] 44
R.21 Overview of RL] 50

XXViil List of figures
2.22 Overview of the NITOS testbed) 53
.23 NITOS testbed Nodes| e e, 54
2.24 FlexRIC Architecturef. 56
R.25 Docker Architecture] 57
.26 Kubernetes Architecturd 58
R.27 KubeVirt Architecture] 61
2.28 KubeFlow ML lifecycle] 62
B.1 The deployment of Heterogeneous MEC-functional 5G Network on Kuber-

..................................... 66
B.2 MEC Host Architecture] o 68
B.3 MEC traffic passed on dual technology DU’s| 69
B.4 Radio Access Technology switch] 70
B.5 Live Migration of MEC service! 71
B.6 Migration Time for each scenario] 73
B.7 _Latency on Fronthaul (VoIP application); red line denotes when the migration
.................................. 73
B.8 Experimental evaluation of the Follow-me MEC system for different scenarios| 73
4.1 The deployment of the live-migration capable 5SG Edge Infrastructure on Ku-
.................................... 81
4.2 Deep Reinforcement Learning Architecture for the Live Migration Environ-
..................................... 87
4.3 Part of a real-world 5G commercial topology located near State Route 111|
highway, California U.S| 90
4.4 Migration time on services: VM vs Pod) 94
“.5 Migrationtime on NFsas VMs|. 94
1.6 End-to-End Jitter during migration of services: VM vs Pod) 94
4.7 End-to-End Throughput during migration of services: VM vs Pod| 94
4.8 Live Migration measurements) 94
U.9 Average reward per episode during training) 95
“.10 Average duration per episode during training| 95
#.11 Agents training evaluation: DQON vs DSONJ 95

List of figures XXIX

“.12 DON agent’s actions during user’s movement in the highway, in an over
loaded edge cluster; vertical lines denote when the migrations take place on
...................................... 95

5.1 Experimental Setup - The deployment of Cloud Native-Al 5G Network on
.................................. 105

5.2 Traffic Classification & Sliding Window Approach 110

5.3 Users’ Network Traffic Baseline Scenarios depicting network traffic at a spe-
cific time interval during theday) 110

5.4 Attenuation Scenario emulating UE mobility in office] 112

5.5 Example of sliding-window scheme! 113

5.6 MLOps Training Architecture] 121

5.7 Distributed Training 122

5.8 Model Off-line Training Evaluation on Google Colab and Experimental Eval{
wationon Testbed) 124

5.9 UE 1 QoE with and without the Al unit equipped with CNN-LSTM] 127

5.10 UE 2 QoE with and without the Al unit equipped with CNN-LSTM/| 127

5.11 UE 3 QoE with and without the Al unit equipped with CNN-LSTM/| 127

5.12 Error before & after online training. The red horizontal line indicates the errof

hreshold] 128

5.13 Experimental results for Distributed Training 129

6.1 Experimental Setup: End-to-End Deployment of the AI-Driven Network In-
trusion Detection 5G Network! 134

6.2 Detailed Architecture of the AI-Driven Network Intrusion Detection System.) 139

6.3 Model Training Evaluation: Accuracy, ROC AUC, and F1 Score Comparison) 140

6.4 Confusion Matrix for the Random Forest Model| 140

6.5 Anomaly Traffic w/o Defencel 141

6.6 _Anomaly Traffic w/Defencel 141

6.7 _Anomaly Traffic w/ and w/o Defence; red line denotes when the anomaly|
traffic was generated| 141

6.8 DoS Attack w/o Defence) 142

6.9 DoS Attack w/Defencel 142

XXX List of figures

6.10 DoS Attack w/ and w/o Defence: red line denotes when the attack started] . 142

6.11 End-User’s RTT Under DoS Attack w/wo Defence! 143

6.12 UPF’s CPU Utilization During DoS Attack w/wo Defencel 143

List of tables

[[.1 Comparison of 5G vs. 6G Performance Metrics and Applications 5
B.1 Benchmark Characteristics (ins) « « v v v v v e e e 73
4.1 Experimental Setup of the Edge Infrastructurd 84
4.2 Deep Reinforcement Learning Parameters| 92
5.1 Comparison of state-of-the-art with our approach) 103
5.2 Neural Networks Configuration] v v v v v v 115
5.3 Examples of UE slices assigning the priorities to each criterion (C;) based on
.................................. 118
5.4 R? Evaluation of the Neural Networks 123
6.1 Experimental Setup 135
6.2 Training and inference times for various machine learning model§ 141

XXX1

Abbreviations

2-6G

Al

Al

ANN

API

AR

ARQ

ATD

AUC

AWGN

BBU

Bi-LSTM

BLER

2nd-6th generation mobile networks

Interface from non-RT RIC to near-RT RIC

Artificial Intelligence

Artificial Neural Network

Application Programming Interface

Augmented Reality

Automatic Repeat reQuest

Anomaly Traffic Detector

Area Under Curve

Additive White Gaussian Noise

Baseband Unit

Bidirectional Long Short-Term Memory

Block Error Rate

XXXiii

XXX1V List of tables
BPF Bandwidth Part

C-RAN Cloud Radio Access Network

CQI Channel Quality Indicator

CRAF Core RAN Analytics Function

CRIU heckpoint/Restore In Userspace

CP Control Plane

CPU Central Processing Unit

CU Centralized Unit

CU-CP Centralized Unit — Control Plane

CU-UP Centralized Unit — User Plane

CUPS Control and User Plane Separation

CNN Convolutional Neural Network

CNN-LSTM Convolutional Neural Network - Long Short-Term Memory
DL Downlink

DNN Deep Neural Network

DoS

Denial of Service

List of tables

XXXV

DPDK

DRL

DU

E2

E2-Agent

¢eMBB

eNB

F1,EL, E2

FAPI

FDD

FEC

FFT

FNN

FlexRIC

FP

FR1, FR2

Data Plane Development Kit

Deep Reinforcement Learning

Distributed Unit

Interface between near-RT RIC and E2 nodes

O-RAN E2 Node Agent

Enhanced Mobile Broadband

4G Radio Node B

O-RAN / 3GPP functional split interfaces

Fronthaul Application Programming Interface

Frequency-Division Duplexing

Forward Error Correction

Fast Fourier Transform

Feed-Forward Neural Network

Flexible RAN Intelligent Controller

False Positive

Frequency Range 1 and 2

XXXVi List of tables
FTP File Transfer Protocol

gNB 5G New Radio Node B

GHz Gigahertz

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

GTP GPRS Tunneling Protocol

HARQ Hybrid Automatic Repeat Request

HTTP Hypertext Transfer Protocol

HSS Home Subscriber Server

IDS Intrusion Detection System

IMT International Mobile Telecommunications

ISAC Integrated Sensing and Communications

ITU International Telecommunication Union

JCAS Joint Communications and Sensing

K8s Kubernetes

KDDCUP’99 Knowledge Discovery and Data Mining Cup 1999 Dataset

List of tables XXXVil

KNN K-Nearest Neighbors

LMF Location Management Function
LOF Local Outlier Factor

LSTM Long Short-Term Memory
MAC Medium Access Control

MAE Mean Absolute Error

Mbps Megabits per second

MDP Markov Decision Processes
MEC Multi-Access Edge Computing

MinMaxScaler Minimum-Maximum Normalization Scaler

MIMO Multiple Input Multiple Output

ML Machine Learning

MLOps Machine Learning Operations

MME Mobility Management Entity

mMTC massive Machine-Type Communications

MySQL Structured Query Language Database

XXXViii List of tables
NAS Non-Access Stratum

NF, NFV Network Function; Network Functions Virtualization
NGFI Next Generation Fronthaul Interface

NGINX Open-source Web Server

NITOS Network Implementation Testbed

NR New Radio (5G)

NSSAI Network Slice Selection Assistance Information
NSSF Network Slice Selection Function

NWDAF Network Data Analytics Function

O-RAN Open Radio Access Network

OAI OpenAirInterface

OFDM Orthogonal Frequency-Division Multiplexing

PDCP Packet Data Convergence Protocol

PDU Protocol Data Unit

PHY Physical Layer

PRB Physical Resource Block

List of tables XXX1X

PS Parameter Server

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel
PyShark Python wrapper for TShark network protocol analyzer
QoE Quality of Experience

QoS Quality of Service

R2 Coefficient of Determination
RAN Radio Access Network

RAT Radio Access Technology

RB Resource Block

ReLU Rectified Linear Unit

RF Random Forest

RFC Random Forest Classifier

RIC RAN Intelligent Controller

RL Reinforcement Learning

RLC

Radio Link Control

x1

List of tables

ROC

RRC

RTT

S-NSSAI

SBA

Scapy

SD

SGi

SGW

SIP

SiPp

SLA

SM

SMF

SMO

SVMs

Receiver Operating Characteristic

Radio Resource Control

Round-Trip Time

Single Network Slice Selection Assistance Information

Service-Based Architecture

Python-based Packet Manipulation Tool

Slice Differentiator

Interface between GGSN/UPF and the external PDN

Serving Gateway

Session Initiation Protocol

SIP protocol traffic generator

Service Level Agreement

Service Model

Session Management Function

Service Management and Orchestration

Support Vector Machines

List of tables

xli

B

TDD

tbit/s

THz

TPR

TPU

TSF

UE

UL

UP

UPF

URLLC

XR

Transport Block

Time-Division Duplexing

Terabits per second

Terahertz

True Positive Rate

Tensor Processing Unit

Time Series Forecasting

User Equipment

Uplink

User Plane

User Plane Function

Ultra-Reliable Low-Latency Communications

Extended Reality

Chapter 1

Introduction

1.1 Evolution towards 6G Networks

The evolution of mobile communications has continuously reshaped global connectivity.
Early networks (2G/3G) laid the groundwork for basic voice and data services, while 4G
LTE enabled multimedia-rich applications. The advent of 5G further revolutionized connec-
tivity by introducing three broad service categories: enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC), and massive Machine-Type Com-
munications (mMTC) [9]. The eMBB expands capacity and data rates to support bandwidth-
intensive applications (e.g. 4K/8K video streaming, mobile broadband access), with 5G tar-
gets of up to 20Gbps peak download rates. URLLC focuses on mission-critical services by
providing end-to-end latencies on the order of Ims and extremely high reliability (99.999%),
enabling applications like industrial automation, vehicle-to-X communication, and remote
surgery. mMTC supports massive IoT deployment, connecting up to 10° devices per square
kilometer with improved energy efficiency for sensor nodes.

Despite its advances, 5G still faces fundamental challenges in meeting emerging require-
ments. One issue is scalability — handling an ever-growing density of devices and data traffic
while maintaining performance. For instance, 5G’s design goal of one million devices per
km? may be insufficient for the “Internet of Everything” envisaged in the coming decade.
Another concern is energy efficiency: dense 5G deployments (especially mmWave cells and
massive MIMO antennas) can consume considerable power, and battery-powered loT de-
vices still struggle with limited lifespans. Future networks call for an order-of-magnitude

improvement in energy efficiency. Additionally, delivering deterministic ultra-low latency is

1

2 Chapter 1. Introduction

challenging with 5G’s current architecture — while 1 ms radio link latency is possible in ideal
cases, guaranteeing consistently low end-to-end latency for time-sensitive applications like
industrial control remains difficult. Techniques like Time-Sensitive Networking integration
are only partial solutions in 5G. Furthermore, 5G networks are not inherently “intelligent” or
context-aware; they primarily react to network conditions rather than proactively adapting to
the semantic needs of applications.

6G is envisioned to address these gaps by design. Initial discussions project 6G de-
ployment around 2030 [[10] and research and development efforts have already commenced
worldwide with several flagship initiatives. These initiatives underscore a global consensus
that 6G will be a transformative leap rather than an incremental upgrade. Indeed, early 6G

vision documents agree on certain key differentiators that will set 6G apart from 5G:

» Al-Native Infrastructure: 6G networks are expected to be designed from the ground
up with artificial intelligence and machine learning deeply integrated into control and
management planes. Whereas 5G added some Al-driven features as add-on solutions,
6G will be “Al-native”, enabling fully autonomous network operations “with zero hu-
man touch” [[L1]. This means tasks like resource allocation, fault detection, and opti-
mization of radio parameters could be handled by AI agents in real time across dis-
tributed network elements. An Al-native 6G core would allow the network to learn
and self-optimize end-to-end. This is critical for handling complexity: 6G must coor-
dinate many more antennas, nodes, frequency bands, and service types than 5G. By
embedding Al at its core, the network can flexibly manage traffic and slice resources
far more efficiently than fixed algorithms. Native Al also contributes to sustainability
(by continually finding energy-saving strategies) and to resilience (by predicting and

mitigating faults or security threats).

* Integrated Sensing and Communication (ISAC): Beyond just moving data, 6G will
also sense and map the environment. This concept, also known as Joint Communication
and Sensing (JCAS), treats radio signals as a tool for situational awareness in parallel
with information transfer. This means that 6G base stations and devices perform radar-
like functions: measuring reflections of radio waves to detect objects, track motion,

and localize targets with extreme precision.

» Use of Terahertz Bands: To achieve a Terabit-per-second throughput performance,

1.1 Evolution towards 6G Networks 3

6G will expand into previously untapped spectrum, specifically the sub-terahertz range
(0.1-1 THz). 5G New Radio reaches up to millimeter-wave frequencies (24—52 GHz,
with experimental use up to 100 GHz), but 6G is aiming at using the higher frequency
range in the upper mmWave and THz band. These frequencies bring enormous raw
bandwidth of tens of GHz per channel, enabling data rates ranging from 100 Gbps to
1 Tbps [[12]. Terahertz waves are also very directional and short-range, which aligns
with ultra-dense networks of the future where cells might cover small areas or specific
hotspots. However, THz propagation faces high free-space path loss and susceptibility
to blockage by obstacles. This drives 6G research into advanced wireless transport
technologies — for example, novel ultra-massive MIMO antenna arrays and reflecting

intelligent surfaces (RIS) to redirect signals.

* Sustainability and Energy Efficiency: A core design tenet for 6G is sustainable net-
working, reflecting both environmental concerns and practical operational costs. This
manifests in multiple ways in 6G. First, network hardware and deployments should be
far more energy-efficient (bits per joule) than today; 6G targets suggest a 10-fold im-
provement in network energy efficiency relative to 5G, achieved through techniques
like energy-aware scheduling, adaptive sleep modes for network nodes, and use of Al

to minimize power use during low traffic [|13].

* Precision Localization and Navigation: With its new sensing abilities and wide band-
width signals, 6G will offer localization services of unprecedented precision. The goal
is to locate devices or objects to within a few centimeters or even millimeters. In 6G,
the high-frequency waveforms and large antenna arrays can be exploited for techniques

like angle-of-arrival and time-difference-of-arrival estimation with extreme accuracy.

The Fig. | 1] illustrates the key areas of 5G upon which the researchers of the flagship 6G
project, Hexa-X, will build to develop future 6G technologies. Additionally, Fig. from
Huawei emphasizes the integration of new technologies such as Al, sensing, and enhanced
mobile broadband (eMBB+) in the Al-centric paradigm envisioned for 6G networks. To sum-
marize the technological leap from 5G to 6G, Table provides a high-level comparison
of their performance targets and representative applications. In every critical dimension—
bandwidth, latency, density, intelligence—6G aims for an order-of-magnitude improvement

over 5@, facilitating a new era of applications closely integrating our physical and digital

4 Chapter 1. Introduction

Radio
THz Performance
Extreme LN HW
D-MIMO
i THz W
experience T
channels Precise

localisation
HW-aware beamforming Sensing and Mapping

sustainability
waveforms

Flexible topology X A Spectrum flexibility

Positioning

Access virtualization e mmwW Al-driven air interface

Secure and
Vertical dependability NTN M-MIMO

distributed Al
< mMTC SG son . —
Human-Machine Explainable Al

Slabal Interfaces o Trust-
service NFy | Continuum management worthiness

URLLC
coverage
3 Zero-energy devices / SEA \ Predictive and intent-

l based orchestration

Network Evolution
S Connecting
&Expansion s
Intelligence
Node

Immersive Digital Twins

programmability \
Service-based network
i | imaligence
Figure 1.1: Hexa-X 6G research focus ar- Figure 1.2: Huawei’s vision on 6G: from 5G to
eas building upon 5G [[14] Al-centric 6G []15]

experiences.

The general context of 6G networks is one of convergence: communications technology
converging with differemt domains (Al, control systems, sensing, energy efficiency), and
previously separate network types (3GPP, non-3GPP, terrestrial cellular, satellite, short-range
device links) converging into one fabric. This holistic vision is driving academia and industry
to collaborate on defining 6G’s requirements and technologies today, so that a decade from
now, society can begin taking advantage of the benefits of the future applications. However,
realizing this transformative potential involves overcoming critical technological and opera-
tional challenges. The next section dives into some of these challenges in detail, highlighting
key motivating factors that drove this thesis such as the underpin the need for dynamic re-
source allocation, intelligent network management, and robust security mechanisms in the

evolution toward 6G.

1.2 Management and Operation Challenges for 6G Networks

The ambitious vision of 6G, introduces some architectural and algorithmic challenges.
The requirement of seamless service continuity implies that users and devices must experi-
ence uninterrupted, context-aware services even as they move across heterogeneous networks
or switch between connectivity modes. Achieving this is non-trivial; 6G will need to coor-
dinate across multiple radio access technologies and network domains to maintain sessions
without degradation. Similarly, the demand for extreme performance in terms of latency and

reliability forces a continuous optimization of resource allocation algorithms. Network re-

1.2 Management and Operation Challenges for 6G Networks

Table 1.1: Comparison of 5G vs. 6G Performance Metrics and Applications

Metric/Feature 5G (IMT-2020) 6G (IMT-2030 Targets)
Peak Data Rate ~20 Gbps >1 Tbps
User Experienced Rate >100 Mbps >1 Gbps
Latency (Air Interface) <1 ms <0.1 ms

Reliability (BLER)

Connection Density

Mobility Support

Spectrum Bands

Network Architecture

Representative Use

Cases

99.999% (5-nines)

108 devices/km?

Up to 500 km/h

Sub-6 GHz, mmWave (<100 GHz)

Service-based, network slicing

eMBB (AR/VR, HD media),
URLLC (V2X, industrial 1oT),
mMTC (IoT)

99.99999% (7-nines)

107 devices/km?

Up to 1000 km/h

mmWave, sub-THz, optical

Al-native, dynamic slicing

XR/holography, tactile Internet,
autonomous systems, Al-driven

applications

sources like spectrum, antenna layers, computing and storage capacity must be allocated in a
far more dynamic and fine-grained manner than in 5G, since static or coarse resource slicing
would be unable to meet the highly variable Quality-of-Service requirements. This is further
complicated by mobility: 6G is expected to serve highly mobile scenarios (e.g. high-speed
transport, drones, satellites) while still guaranteeing ultra-low latency and high reliability.
Maintaining service quality for moving users may require predictive handover strategies and
on-the-fly reconfiguration of network paths or function placement, straining existing mobility
management protocols. Meanwhile, the security issues for 6G become even more complex.
The network’s core design is expected to be cloud-native, fully relying on softwarized—
functions that once ran on dedicated hardware are virtualized. This opens new attack sur-
faces and failure modes, mainly towards exploits of virtualized network functions. In other

words, the extreme performance targets, the distributed intelligence, and the software-defined

6 Chapter 1. Introduction

flexibility open new challenges to continuous service delivery, resource optimization, mo-
bility management, and secure operation. One key enabler to meet 6G’s low-latency and
high-bandwidth goals is the integration of edge computing deeply into the network architec-
ture. By deploying computational workloads and services at Multi-access Edge Computing
(MEC) servers closer to end-users, 6G can dramatically reduce communication delays for
applications such as immersive augmented reality or real-time control. Pushing intelligence
and content to the edge is seen as crucial for handling massive IoT, Industry 4.0, and other
data-intensive use cases while avoiding backhaul bottlenecks [|16]. However, this distributed
service scheme raises the problem of orchestration under mobility. As users or devices move,
the network may need to migrate an ongoing service (e.g. a video analytics application or a
VR rendering engine) from one edge node to another that is closer to the user’s new location,
in order to meet the latency and bandwidth needs. Such service migration must occur seam-
lessly and without user-perceived interruption. Orchestrating this in real time is extremely
challenging: it requires predictive analytics to determine when to migrate, selection of an op-
timal target edge node with available resources, state transfer and synchronization between
the source and target, and careful handling of the underlying connectivity handover so that
the session persists. In 6G, with its more strict continuity requirements, new mechanisms are
needed to handle live state transfer and indirection of traffic on the fly. The complexity is
exacerbated in real-world deployments where multiple infrastructure providers and domains
are involved (e.g. a user moving from one operator’s coverage to another’s, or from an indoor
private network to a macro network). In essence, edge computing will be crucial in 6G, but it
transforms the mobility management problem into a joint communication-computation and

orchestration problem.

Another emerging challenge lies in managing dynamic resource contention in dense radio
environments. 5G already introduced the concept of network slicing to isolate and guarantee
resources for different services (e.g. an eMBB slice for broadband streaming, an URLLC slice
for mission-critical control). In 6G, slices will need to become more adaptive and “service-
aware.” The network is expected to support an even wider variety of application types si-
multaneously — from ultra-low-latency industrial control to bandwidth-hungry holographic
displays — often over the same physical infrastructure. In dense deployments with many base
stations and devices (including new types like [oT sensors, vehicles, and drones), the interfer-

ence and load conditions can fluctuate rapidly. A static or one-time slice configuration would

1.2 Management and Operation Challenges for 6G Networks 7

either frequently violate the service requirements or waste capacity. Thus, there is a strong
motivation for predictive, Al-driven slicing in 6G. The idea is to continuously monitor net-
work conditions such as traffic patterns, radio quality, user behavior and anticipate the future
demand. Machine learning models can forecast, and the network controller could proactively
adjust slice allocations or scheduling priorities in advance. By being service-aware, the slic-
ing mechanism would also consider the specific QoS needs of each application type — for
instance, giving transient bursts of extra radio resources to a vehicular communication slice
when a safety message is detected, or temporarily reduce the throughput of a delay-tolerant
slice to ensure a VR stream remains within its latency range. Achieving this level of agility
requires advances in RAN algorithms and cross-layer optimization. It also demands data col-
lection from the network, and closed-loop control to enforce the slice adjustments at runtime.
Early research anticipates that incorporating Al at the RAN scheduler and slice orchestrator
will be a necessity for 6G, enabling the network to learn and auto-tune its resource allocation
policies on the fly [[17]. We also must recognize that user behavior and radio conditions are
inherently non-stationary, fluctuating over time in ways that cannot be fully generalized. This
means that 6G networks must employ online learning and Al-driven optimization at scale. In
contrast to traditional networks where algorithm parameters are set through offline planning
or human tuning, an Al-native 6G network would continuously learn from real-time data. For
example, the network can observe patterns of user mobility, application usage peaks, or signal
quality variations, and gradually improve its predictive models for traffic and channel condi-
tions. These models can then drive decisions such as routing, handover timing, power control,
and cache placement with greater accuracy than static heuristics. To support such capabili-
ties, the network architecture must integrate a distributed machine learning pipeline — often
referred to as network MLOps (Machine Learning Operations). This includes mechanisms
for data collection and curation (from base stations, user devices, core network elements),
training or updating models (which might occur in centralized cloud nodes or hierarchically
across edge and central nodes), and deploying the updated models back into the network el-
ements for inference. Frameworks for closed-loop automation, such as ETSI’s Experiential
Networked Intelligence (ENI) [18] or the 3GPP Network Data Analytics Function (NWDAF)
introduced in 5G, provide early examples of how analytics and learning can be looped into

management decisions.

The challenge is to design these learning loops such that they converge quickly, remain

8 Chapter 1. Introduction

stable, and make beneficial decisions to network performance. Additionally, the overhead
of data shipping and model training must be controlled so as not to consume excessive net-
work resources. Despite these challenges, the benefit is significant: a network that improves
with experience, adapting to new conditions or services in a matter of minutes or hours in-
stead of requiring months of re-engineering. But with the autonomy of 6G comes a great
concern for security and resilience. There is a recognized need for intelligent intrusion de-
tection and mitigation systems that operate hand-in-hand with the orchestration and control
plane. 6G networks will likely employ Al-driven security monitors that learn baseline behav-
ior and can detect anomalies in traffic patterns or network state in real time. For example, a
distributed Intrusion Detection System (IDS) could analyze signals from many parts of the
network (CPU usage spikes, unusual signaling sequences, drops in QoS) and correlate them
to flag a coordinated attack on a network slice or a set of base stations. Once an intrusion
or anomaly is detected, the network should be able to automatically respond — this could
mean isolating portions of the network, re-routing critical services to safe resources, push-
ing software patches, or re-training an affected AI model on the fly to exclude tainted data.
Such adaptive security management blurs the line between networking and security opera-
tions (NetOps and SecOps), pointing toward a future of autonomous security orchestration.
The challenge is that these countermeasures themselves must act within the strict latency and

reliability bounds of 6G services.

To tackle the above challenges, the networking industry is converging on new architec-
tural frameworks that bring intelligence and openness into network management. Such an
example is the O-RAN (Open RAN) architecture, which is expected to play a central role
in next-generation RAN management. O-RAN decouples the RAN into open, interoperable
components and introduces the RAN Intelligent Controller (RIC). There are two types of RIC
in O-RAN: the non-real-time RIC (within the service management and orchestration layer),
which handles tasks on the order of seconds or longer (e.g. policy generation, model train-
ing), and the near-real-time RIC (at the edge of the RAN), which can execute control loops
with latency on the order of 10ms to 1s. Developers can write xApps (for the near-RT RIC)
and rApps (for the non-RT RIC) that implement custom control logic—ranging from smarter
handover algorithms, to predictive scheduling, to anomaly detection in the RAN. This opens

the RAN to programmability and innovation in a way not possible in previous generations.

In conclusion, the vision of 6G as an autonomously orchestrated, Al-powered, edge-to-

1.3 Thesis Contributions to 6G Management and Operations 9

cloud computing fabric brings many research challenges. These span continuous service con-
tinuity under mobility, agile resource allocation and slicing in dynamic conditions, continual
learning and adaptation, and embedding security and trust into every layer of a softwarized
architecture. Addressing these challenges will require innovations in network architecture,
algorithms, and protocols. The telecom industry’s early efforts such as edge computing ad-
vances, Al-native network prototypes and O-RAN standardization are laying the ground-
work, but many open questions remain. This thesis, in the following chapters, will build
upon this context, focusing specifically on a subset of these emerging problems, and propose

novel contributions toward enabling intelligent management of 6G networks.

1.3 Thesis Contributions to 6G Management and Opera-
tions

In light of the previously outlined challenges, this thesis sets out to investigate how 6G
networks can achieve intelligent, adaptive, and secure management through Al-driven mech-

anisms and cloud-native orchestration. The underlying question motivating this research is:

How can end-to-end Quality of Service (QoS) guarantees be delivered dynam-
ically in 6G networks, especially under conditions of user mobility, resource

contention, and potential security threats?

To answer this, the thesis addresses the problem across three key dimensions: service
continuity through edge computing, adaptive resource slicing, and resilient Al-native

network security.

1. Seamless Service Continuity via Edge Computing and DRL-based Mi-

gration
Research Questions:

* How can MEC services be dynamically migrated in real-world networks to follow user

mobility and maintain low-latency performance?

* How can the network anticipate user movement and proactively adapt computational

and networking resources?

10 Chapter 1. Introduction

* How can we evaluate the performance of the proposed migration framework in realistic

scenarios?

Contribution: In chapters 3, i we designed, implemented, and evaluated a cloud-native
Follow-Me MEC architecture based on disaggregated and heterogeneous base stations and
containerized edge services. Through extensive experimentation on a testbed, we demon-
strated seamless low-latency MEC service continuity. To optimize migration decisions, we
proposed a Deep Reinforcement Learning (DRL) controller that anticipates mobility by learn-
ing multi-cell latency patterns and server load, and dynamically selects the optimal target
edge. Our approach significantly outperforms naive or reactive strategies in terms of service

downtime and user-perceived latency.

2. Service-Aware Resource Slicing through Deep Learning and MLOps

Research Questions:

* How can network slices be dynamically adapted to the evolving demands of mobile

users and applications?

* How can user behavior and radio condition forecasts be leveraged to preemptively

allocate resources?

* How can we deploy and update ML models efficiently in real-world, cloud-native net-

work environments?

Contributions: In chapter [, the thesis introduces a service-aware slicing framework
that integrates time-series forecasting models trained on traffic, QoS, and channel quality in-
dicators (CQI). By using deep models such as LSTM, GRU, and Bi-LSTM, we accurately
predicted future demand trends and adapted RAN slices proactively via programmable APIs.
To maintain accuracy in real-time deployments, we developed a full MLOps pipeline capa-
ble of online and distributed training, model monitoring, and inference within a Kubernetes-
managed infrastructure. This platform enables continual adaptation to user and channel dy-
namics, addressing the non-stationarity inherent in 6G usage scenarios. Our findings indicate
that the network can swiftly adjust to traffic, providing users with slices tailored to their
application needs. Notably, our experiments show that under the studied settings, the users
experienced up to 4 times lower latency (jitter) and nearly 4 times higher throughput when

interacting with various applications, compared to the standard non-AI/ML unit.

1.4 Other Research Contributions (Out of Scope of This Thesis) 11

3. Secure and Intelligent Resource Control via Network Intrusion Detec-

tion and xApp Orchestration

Research Questions:
* How can 6G networks detect and react to malicious traffic patterns that impact QoS?

* How can Al-based intrusion detection be integrated with network control in an open,

softwarized RAN?

Contributions: In chapter [we designed a network anomaly detection module capable
of identifying abnormal traffic flows using Random Forest, SVMs, and Autoencoder models
trained on real packet statistics. This module was integrated into the Open RAN architecture
using the near-RT RIC, where an xApp continuously monitors per-user flows and triggers
policy changes such as rellocation of Radio Resource Blocks and user management upon de-
tecting threats. This closed-loop system ensures that QoS for legitimate users remains intact
even under attack, and paves the way for autonomous security enforcement in future RAN
deployments. Experimental evaluations show that our system effectively maintains low la-
tency under attack conditions, nearly doubles the throughput for legitimate users, and reduces
average CPU usage by up to 15%.

The cumulative result of this work is a modular, Al-native orchestration stack for fu-
ture wireless networks. Each component—from service migration at the edge, to predictive
RAN slicing, to anomaly-aware policy enforcement—has been validated through experimen-
tal evaluations in testbed environments with realistic traffic and mobility patterns. Together,
these contributions offer a practical roadmap for building intelligent and resilient 6G infras-

tructures.

1.4 Other Research Contributions (Out of Scope of This
Thesis)

In parallel to the main contributions of this thesis, the author also actively participated in
side projects and tool development that, while not forming part of the core thesis objectives,
demonstrate valuable technical expertise and relevance to the broader 6G research ecosystem.

Bellow are some of the notable contributions:

12 Chapter 1. Introduction

SLICES-RI:

SLICES Research Infrastructure (SLICES-RI) project, is a European initiative aimed at
providing a flexible, multi-site, and programmable experimentation platform for advancing
research in 5G, post-5G, and 6G technologies. Further details on SLICES-RI can be found in
chapter .4. The author contributed to the SLICES-RI project in the following ways:

* Multi-Cluster Provisioner: The author designed and implemented a custom Kubernetes
cluster provisioner capable of dynamically creating and managing multiple experi-
mental clusters. This tool leverages KubeVirt to deploy virtual machines as Kuber-
netes nodes and uses Rancher APIs to register and configure them as part of man-
aged clusters. The provisioner automates the entire lifecycle, from VM instantiation to
cluster registration, facilitating repeatable, isolated experimentation environments for
different user groups or research objectives. The system supports integration of both
RKE2 and K3s distributions and introduces options for advanced network configura-

tions (e.g., Multus, DNS, TLS-SANS).

* Integration of a RIC in the Post-5G Blueprint: As part of the post-5G blueprint main-
tained within SLICES-RI, the author contributed to the integration of the FlexRIC
RIC Controller. FlexRIC provides a modular and programmable framework to control
the RAN via standardized near-real-time RIC interfaces. The author’s work involved
adapting the control interface logic and ensuring the FlexRIC instance could commu-

nicate with emulated or real RAN components in a containerized testbed.

» Automated Provisioning of a USRP-Based RAN Installation: Automation of a USRP-
based RAN setup, including the deployment of OpenAirInterface (OAI) gNB instances
and associated CN components. The automation framework configures the USRP hard-
ware, synchronizes RF parameters, and provisions the RAN stack onto compute nodes
via Ansbile. This reduces the manual configuration overhead and enables rapid deploy-

ment of real-world RANs for experimentation within the post-5G blueprint.

OpenAirlnterface & FlexRIC:

The author has been actively involved in the OpenAirlnterface project, an open-source
initiative that provides comprehensive platforms and tools for 5G and beyond wireless re-
search and experimentation. Detailed information about OAI and FlexRIC tools utilized

throughout this thesis is provided in Chapter 2.4. In collaboration with the OAI and FlexRIC

1.5 Thesis Structure 13

communities, the author contributed within OAI RAN implementations with standardized
O-RAN specifications. Specifically, the contributions involved developing and integrating
standardized O-RAN Type 1 RAN Control (RC) reporting mechanisms, enhancing OAI’s
capabilities to meet O-RAN Alliance standards. Due to the current limitations within OAI’s
RAN implementation—particularly incomplete support for certain handover events involv-
ing NG or Xn interfaces—the current implementation focuses primarily on UE attachment-
related events. Nevertheless, these initial contributions establish the groundwork for broader
support of a comprehensive range of RRC-triggered events within OAI and FlexRIC. Key

contributions integrated into the FlexRIC and OAI platforms, are summarized as follows:

» Extension of the RC monitoring xApp: In order to support all standardized RC RE-
PORT Styles (1 to 5). This advancement significantly enhances FlexRIC’s capability

to monitor and control radio resources at granular levels.

* Encoding/Decoding RRC Messages: Enables detection and reporting of protocol mes-
sages such as RRC Setup Complete, RRC Reconfiguration, Security Mode Complete,

and Measurement Report.

» UE ID: Allows tracking of unique UE identifiers based on triggering events like the
RRC Setup Complete or F1 UE Context Setup Request.

The modifications have been integrated upstream into both the FlexRIC and OpenAirIn-

terface codebases.T2

1.5 Thesis Structure

This thesis is structured into seven main chapters, following a logical progression from

context and background to proposed solutions and evaluation:

* Chapter 1 — Introduction: Presents the motivation behind this research, the evolu-
tion towards 6G networks, the management and operation challenges, and outlines the

thesis contributions, including a brief overview of additional research activities.

'FlexRIC commit: https://gitlab.eurecom.fr/mosaic5qg/flexric/-/commit/3690C

54e9954e7fclaf98alcdf3e6dcl79998db0
2OpenAirInterface commit: https://gitlab.eurecom.fr/oai/openairinterface5qg/-/

commit/e6797a0b0e80ebal3d51e738e4fa90df9£763b32

https://gitlab.eurecom.fr/mosaic5g/flexric/-/commit/3690c54e9954e7fc1af98a1cdf3e6dc179998db0
https://gitlab.eurecom.fr/mosaic5g/flexric/-/commit/3690c54e9954e7fc1af98a1cdf3e6dc179998db0
https://gitlab.eurecom.fr/oai/openairinterface5g/-/commit/e6797a0b0e80eba13d51e738e4fa90df9f763b32
https://gitlab.eurecom.fr/oai/openairinterface5g/-/commit/e6797a0b0e80eba13d51e738e4fa90df9f763b32

14 Chapter 1. Introduction

* Chapter 2 — Background: Provides essential background on SG/NR architecture and
slicing mechanisms, Multi-access Edge Computing (MEC), and introduces key con-
cepts in Artificial Intelligence and Machine Learning, including tools and testbeds used

throughout the thesis.

* Chapter 3 — Mobility-Aware Edge Service Migration for 6G Networks: Introduces
the follow-me MEC concept and describes a lightweight architecture for edge service
migration under user mobility constraints. Evaluation results on real testbeds demon-

strate the feasibility of seamless low-latency handovers.

* Chapter 4 — Deep Reinforcement Learning based Service Migration for 6G Net-
works: Extends the service migration framework using a Deep Reinforcement Learn-
ing (DRL) agent to optimize decision-making in dynamic and resource-constrained

edge environments.

* Chapter 5 — Service-Aware Network Slicing for 6G Networks: Proposes a dynamic
slicing mechanism powered by time-series deep learning models. The chapter includes
the architecture of an AI/ML forecasting unit and a Kubernetes-based MLOps stack for

model training, inference, and deployment.

* Chapter 6 — AI-Driven Attack Mitigation using Slicing for 6G Networks: Ad-
dresses the issue of security in 6G RANSs. It presents a network anomaly detection
system using classical ML algorithms and autoencoders, integrated with slicing and

user management logic via an xApp to enforce policy actions in real time.

* Chapter 7 — Conclusions: Summarizes the main findings, reflects on the contribu-
tions, and outlines future directions for extending this research, including deployment

in live RIC platforms and scaling Al pipelines.

Supporting materials such as figures, tables, abbreviations, and publications are included
in the beginning of the thesis for easier readability and reference. A complete bibliography

is provided at the end.

Chapter 2

Background

This chapter presents the fundamental technologies, methodologies, and tools extensively
studied throughout this research. We begin by introducing the core concepts of SG/NR net-
works in Section R.1|, followed by a discussion of Software Defined Networks (SDN) and
their integration into 5G networks within the O-RAN architecture in Section 2.1.6. Section
explores the Multiple Access Edge Computing (MEC) paradigm, emphasizing its role in
enabling low-latency applications. We further introduce AI/ML architectures and models in
Section P.3 that we relied in order to enhance resource optimization in RAN and edge envi-
ronments. Finally, Section .4 provides an overview of the tools and testbeds used to evaluate

the proposed solutions, which are detailed in the subsequent chapters.

2.1 SG/NR

2.1.1 Architecture Overview

The 5G network architecture is designed with two primary configurations: Non-Standalone
(NSA) and Standalone (SA) as illustrated in Fig. R.1|. In the NSA configuration, the 5G Ra-
dio Access Network (RAN) is integrated with the 4G core, providing a limited set of 5G
capabilities. Both LTE and 5G RAN components connect to a shared core network, enabling
communication through the Xn interface.

In contrast, the SA configuration is fully independent, with the 5G RAN supported exclu-
sively by the 5G core network. The core is built using a Service-Based Architecture (SBA),
designed to be cloud-native and fully softwarized. This structure provides increased flexi-

bility and scalability for deploying network functions. The 5G RAN uses New Radio (NR)

15

16 Chapter 2. Background

antennas, known as gNodeBs, replacing the LTE’s eNodeB antennas and allowing for more

advanced capabilities.

Standalone Non-standalone

LTE EPC 5G core LTE EPC

() () .

LTE network \ / 56 network LTE network \ / 56 network

@) ((A’)

Figure 2.1: SA and NSA Architectures

Going deeper into the 5G architecture Fig. 2.2 shows the comprehensive, end-to-end lay-
out of a 5G SA network. It is structured into two main components: the Core Network (CN),
also known as the 5G Core (5GC), and the Radio Access Network (RAN), often referred to as
New Radio (NR). The RAN includes base stations, known as next-generation Node B (gNB),
and User equipment (UEs). Each gNB is designed to handle all radio-based functions, estab-
lishing and maintaining wireless connectivity for UEs. These gNBs are interlinked through
the Xn interface, facilitating coordination for processes like handover when a UE moves be-
tween cells, thus ensuring seamless connectivity.

The SBA-core network offers more flexibility and opportunities for network enhance-
ments. Such innovation enables the network operators to deploy the network functions as
microservices rather than depending on hardware. Furthermore, there is a distinct Control
and User plane separation (CUPS). This approach allows network functions to operate with
flexibility either as dedicated components or as shared resources across different network
slices/regions, depending on specific service requirements.

The Access and Mobility Management Function (AMF) serves as the control anchor from
the RAN’s perspective, managing essential control signaling operations like registration and
mobility support between the CN and UEs. The Session Management Function (SMF) pro-
vides IP addresses to UEs and manages their session. Additionally, other key functions in-
clude the Policy Control Function (PCF) for policy enforcement, Unified Data Management

(UDM) for secure user data storage, the Authentication Server Function (AUSF) to ensure

2.1.1 Architecture Overview 17

secure authentication, and the Network Slice Selection Function (NSSF), which selects the
most appropriate slice the end-users. Since everything operates as a service, the Network
Repository Function (NRF) simplifies network management by performing service discov-
ery, and the Network Exposure Function (NEF) simply exposures the service to/from 3rd
party applications.

On the user plane, the primary function is handled by the User Plane Function (UPF),
which facilitates data transfer between the RAN and external networks, such as the Internet.
The UPF performs several tasks, including routing, packet inspection, and QoS control. To
achieve differentiated packet handling, each user can have one or more Protocol Data Unit
(PDU) sessions, which consist of QoS flows for individual applications or services. In the
core network, IP flows are aligned with QoS flows and tagged to convey service require-
ments, ensuring network slices can deliver precise, context-aware services. Within the RAN,
these QoS flows correspond to data radio bearers, which are essential for RAN-level com-

munication between the gNB and UE.

r |
| | | |\RI | PCF | | UDM ||
: Nnef Nnrf Npcf Nudm :
: Naust Namf Nsmf :
: AUSF AMF SMF :

UE / (R)AN N3 UPF N6 DN

Figure 2.2: 5GNR architecture

In comparison, the 4G architecture illustrated in Fig. 2.3, known as the Evolved Packet
System (EPS), shares a similar structural setup but with notable differences. The EPS includes
LTE for the RAN component and the Evolved Packet Core (EPC) as its core. Here, the base
stations are termed evolved Node B (eNB), and the interconnection between eNBs is facili-
tated via the X2 interface. In the EPC, in contrast with 5GC, there is a hardware dependency
on network functions. The Mobility Management Entity (MME) is the control plane anchor,

connected to eNBs through the S1-c interface, with subscription information maintained by

18 Chapter 2. Background

the Home Subscriber Server (HSS). On the user plane, the Serving Gateway (SGW) anchors

the data path for eNBs, utilizing the S1-u interface for data transmission.

!
i
O

<«Uu> ((K};:;S‘)) <«——S1-MVE-

S\
UE b \\\\81 MMEKSH
, X2 -

N
eNodeB \ \
((z,;\s)) @4—8588—»@ sG> Q

/ \\ S.GW P.GW IP Network

'\ EUTRAN AN EPC

Figure 2.3: LTE architecture

2.1.2 RAN Protocol Stack

The RAN protocol stack plays a crucial role in managing the interface UEs and the core
network. Furthermore, the protocol stack is responsible for Mobility Management, Resource
Allocation, Error Correction, and QoS Optimization. The RAN extends the CUPS logic into
the RAN protocol stack. Specifically, the RAN protocol stack is divided into protocols re-
sponsible for the user plane and protocols that manage the signaling traffic and control plane.
In Fig. 2.4 we can observe the different Protocol stacks for both UE and gNB, which almost
have identical stacks but with different responsibilities that vary due to the gNB’s control
over the UEs in the network. For example, the stack in each gNB and UE contains layers for
Physical (PHY), Medium Access Control (MAC), Radio Link Control (RLC), Packet Data
Convergence Protocol (PDCP), Radio Resource Control (RRC), and Non-Access Stratum
(NAS). However, due to the gNB’s role in controlling network operations, each layer on the
gNB side carries additional responsibilities, particularly within the CP. Bellow we analyze

the different functionalities of each protocol:

* PHY: At the base of the stack, the PHY layer encodes and modulates data for trans-
mission over the air. It manages the fundamental signal processing tasks like encoding,

modulation, and antenna mapping.

2.1.2 RAN Protocol Stack 19

* MAC: The MAC layer sits above the PHY and coordinates access to the shared radio
resources among UEs. Responsibilities include scheduling, error correction (using Hy-
brid Automatic Repeat Request), and QoS management. Also multiplexes each UE’s
data into transport blocks. The scheduler within the MAC layer allocates resources

dynamically.

* RLC: The RLC layer receives data from the upper layer PDCP and stores them in
buffers until they can be transmitted over the air. This layer segments data packets
when necessary and can also perform retransmissions if set to Acknowledged Mode
(AM). When configured in Unacknowledged Mode (UM), it transmits data without

retransmissions, prioritizing speed over reliability.

* PDCP: The PDCP layer handles both CP and UP tasks. For UP it provides retransmis-
sion and reordering through sequence numbering, header compression, and encryption.
The CP applies integrity protection, reducing packet overhead, and ensuring efficient

and secured data transmissions.

* RRC: The RRC layer orchestrates the connection setup and mobility management be-
tween UEs and the network. But interfacing with AMF it mainly maintains the UE’s
state, and manages handover decisions, and security configurations ensuring seamless

connectivity as users move across different cells or network regions.

* NAS: The NAS protocol is responsible for connecting the UE and AMF, applying

network security algorithms.

20 Chapter 2. Background

RLC - > RLC
MAC < > MAC
PHY |« » PHY

User Plane Protocol Stack

HE S5GNB NG Core control function
NAS NAS

RRC

PDCP

MAC

A
[
9]
e e e T

|
|
RLC |
|
|

PHY

Control Plane Protocol Stack

Figure 2.4: 5G Radio Protocol Stack

2.1.3 RAN Functional Splits

To achieve greater flexibility, scalability, and efficiency in network deployments, the 3rd
Generation Partnership Project (3GPP), divided gNodeB into distinct functional units. 3GPP
protocol stack divides functions between the Centralized Unit (CU) the Distributed Unit (DU)
and the Radio Unit (RU) as illustrated in Fig. 2.3. This disaggregation supports virtualiz-
ing functions on commercial, off-the-shelf hardware, providing operators with adaptable and
cost-effective deployment options. As summarized in the previous subsection, the RAN pro-
tocol stack’s main layers include Layer 1 (PHY), Layer 2 (MAC, RLC, PDCP), and Layer 3
(RRC, NAS). In the disaggregated architecture the CU supports the PDCP and RRC while the
DU is responsible for real-time scheduling, and aggregates the lower layers including RLC
MAC and PHY. The PHY layer through specific option splits can be supported only through
RU. It’s important to mention that CU can be further separated into CU-User Plane CU-UP
and CU-Control Plane CU-CP for the user and control functionalities respectively. The CU-
CP manages signaling and control functions, using protocols like RRC for connection and
mobility management and PDCP for integrity protection. The CU-UP, on the other hand,
handles user data, employing PDCP for secure data transfer and QoS mapping. This disag-
gregated structure not only enables enhanced resource allocation and network customization

but also supports the integration of edge computing by placing DUs/CU-UPs nearer to users.

2.1.3 RAN Functional Splits 21

NG.C CU-CP

RRC \\FL:E“\\
DU RU
RLC, MAC, hi-PHY [ppy lo-PHY

(eCPRI, O-RAN)

CU-UF

NG-U == SDAP, PDCP

Figure 2.5: Disaggregated SGNR Architecture

Depending on deployment needs 3GPP defined different Functional Split options in Tech-
nical Requirement (TR) 38.801 [[19]. The Key Split Options are demonstrated in Fig. 2.6 and

are the following:

* Split Option 1: Places RRC in the CU while keeping other functions within the DU
and RU.

* Split Option 2: Moves both RRC and PDCP to the CU, leaving lower layers in the DU
and RU.

 Split Option 3 (Intra-RLC): RF, PHY, MAC, and low RLC are in the DU/RU, while

higher functions remain centralized.

 Split Option 4: MAC, PHY, and RF are distributed, while RLC, PDCP, and RRC are
in the CU.

 Split Option 5 (Intra-MAC): RF, PHY, and certain MAC functions (e.g., HARQ) are
in DU/RU, with upper layers centralized.

* Split Option 6: RF and PHY are in the DU/RU, while upper layers are in the CU.

 Split Option 7 (Intra-PHY): Splits the physical layer, placing some PHY functions and
RF in the DU/RU and others in the CU.

 Split Option 8: Centralizes all functions except RF within the CU.

Lower-layer splits, close to RF, require higher bandwidth and stricter latency but increase
scalability as antenna ports increase. Higher splits, such as those near the PDCP layer, reduce

bandwidth needs, relax latency requirements, and allow CU-RU connections across greater

22 Chapter 2. Background

distances [20]. In LTE, baseband processing functions (e.g., RRC, PDCP, RLC, MAC, PHY)
are handled by a Base Band Unit (BBU), while the RF functions reside in the Remote Radio
Head (RRH). In contrast, a common 5G implementation is split 7, with low PHY and RF in
the RU, and upper functions in a CU/DU setup.

The connection between CU-CP and CU-UP utilizes the E1 interface, standardized by
3GPP and operating with split option 1 for efficient control and user data communication.
One CU-CP can manage multiple CU-UP instances scaled based on network demand. The
F1 interface links the CU to the DU, using option 2, facilitating centralized control and dis-
tributed processing. In addition, a single CU can manage multiple DUs, supporting scalability
and load distribution throughout the network, essential to optimize resources in high-density
areas. The DU connects to the RU through various fronthaul interfaces, including nFAPI [21]
(option 6), eCPRI (option 7), or O-RAN’s open fronthaul [22] (option 7-2x), allowing flexi-

ble, vendor-neutral deployments.

High-
—-‘ RRC MPD(P}—D Lo ‘m_c }—»
B

|1;‘}
RRC ‘J—{Pocp Lo

Figure 2.6: Split options in the Disaggregated SGNR Architecture

1

High- ¥

PHY | | ‘PII\ ‘ RF }_’
&

! Low-
| PHY

High- Low-
MAC MAC

-
Q

|
‘—v—{ RF ‘1—
|

Option 5
Option

-
Q

High-
MAC

Opti
()]Jl ion

Low-
RLC

Low-
MAC

High-
PHY

2.1.4 RAN Resource Allocation/Slicing

Both LTE and SGNR widely adopt a multicarrier modulation technique named Orthogo-
nal Frequency-Division Multiplexing (OFDM), depicted in Fig. 2.7. It divides the available
spectrum into numerous orthogonal subcarriers, each modulated with a low-rate data stream.
This orthogonality ensures that subcarriers do not interfere with each other despite overlap-
ping in the frequency domain. Such signal can be expressed mathematically by the following
Eqn. R.1|, where X, is the symbol transmitted on the k-th subcarrier, f; is the frequency of
the k-th subcarrier and N is the total number of subcarriers. For sending/receiving such sig-
nals both senders/receivers apply Inverse Fast Fourier Transform (IFFT) and Fast Fourier

Transform (FFT) respectively to modulate/demodulate frequency-domain data symbols into

2.1.4 RAN Resource Allocation/Slicing 23

a composite time-domain signal and vice-versa. Traditionally, LTE systems employed a fixed
subcarrier spacing of 15 kHz, optimized for sub-6 GHz frequency ranges with favorable prop-
agation characteristics. However, the design of NR extends beyond sub-6 GHz (Frequency
Range 1, FR1) to include mmWave frequencies (Frequency Range 2, FR2), which exhibit
different propagation behaviors such as higher path loss and increased Doppler effects. To
address these challenges, 5G NR introduces the concept of numerology, which allows flexible
subcarrier spacing. The subcarrier spacing Af in NR is 2 x 15 kHz kHz, where p represents
the numerology index. This can be scaled with subcarrier spacing values such as 15, 30, 60,

120, and 240 kHz.

s(t) =Y Xpe2m it (2.1)

Channel Bandwidth

-

17 FFT FFT Bins

¥

||:|V =1 OFDM Symbol
Concatenated .| Orthogonal Subcarriers
OFDM Symbols P o
Guard
Intervals Frequency

Figure 2.7: OFDM Symbols in Frequency and Time domain.

The smallest allocation unit in the frequency domain is Resource Blocks (RBs). The RBs
combine a group of subcarriers into a manageable unit for allocation. For example, in LTE,
an RB consists of 12 consecutive subcarriers, each spaced 15 kHz apart, resulting in a total
bandwidth of 180 kHz per RB. In 5G New Radio (NR), the subcarrier spacing is scalable
based on the numerology index. The number of RBs available within a given bandwidth is
determined by the carrier bandwidth and subcarrier spacing. For example, a 100 MHz carrier
bandwidth with 15 kHz subcarrier spacing can support approximately 556 RBs. The ability to
allocate RBs dynamically across users and services allows the network to optimize spectral

efficiency while meeting the QoS demands of different applications.

24 Chapter 2. Background

In the time domain, resources are organized into slots, subframes, and frames. A frame
typically spans 10 ms and consists of 10 subframes, each lasting 1 ms. Within each subframe,
the time is further divided into multiple slots, the number of which depends on the numerology
index. For instance, with a numerology of u=0 (15 kHz subcarrier spacing), there are two slots
per subframe, each 0.5 ms in duration. However, higher numerologies, such as p=2 (60 kHz
subcarrier spacing), result in more slots per subframe (e.g., 8 slots of 0.125 ms each). Higher
numerologies in the time domain reduce symbol duration, enabling lower latency and finer
scheduling granularity, which is ideal for URLLC applications. However, shorter symbols
increase sensitivity to timing errors and inter-symbol interference (ISI). Each time-domain
slot is composed of symbols, and the number of symbols per slot is typically 14 for cyclic-

prefix OFDM (CP-OFDM).

The combination of frequency domain RBs and time domain slots forms the resource grid,
a two-dimensional matrix of time-frequency resources. This grid is the basis for scheduling
algorithms, mainly used in the MAC layer through the MAC scheduler. The scheduler mainly
allocates resources to users or applications based on factors such as channel quality indicators
(CQI), QoS requirements, and traffic demands. There is a different scheduling mechanism for
DL and for UL in the scheduler depending on the user requirements, network conditions, and
algorithmic designs. The physical allocation of resources is handled at the level of Physical
Resource Blocks (PRBs). A PRB corresponds to one RB in the frequency domain and one
slot or a subset of symbols within a slot in the time domain. PRBs serve as the building blocks

for transmitting control and data information.

While PRBs provide the basic units for allocating spectrum and time resources to users
and services, network slicing leverages PRBs to create multiple virtualized networks, or
’slices”, each customized to meet specific application requirements and service demands.
Each slice operates as an independent virtual network, optimized for particular types of
services such as enhanced Mobile Broadband (eMBB), URLLC, or massive Machine-Type
Communications (mMTC). For example, an eMBB slice dedicated to high-definition video
streaming can be allocated a contiguous set of PRBs to maximize throughput, while a URLLC
slice focused on real-time control applications can be assigned PRBs with minimal latency
and high reliability. Network slicing operates on two primary levels: inter-slice and intra-slice
slicing. Inter-slice slicing involves the separation of the RAN into completely independent

virtual networks (e.g. URLLC, eMBB), each serving a distinct service category. Intra-slice

2.1.5 RAN Dupplexing 25

slicing, on the other hand, refers to the further subdivision of a single network slice into
smaller, more specialized segments. Each sub-slice can be allocated a specific subset of PRBs
targeted for specific needs. A key element in network slicing is the Network Slice Selection
Assistance Information (NSSAI), which enables the network to identify and assign the ap-
propriate slice to a UE during connection. NSSAI has two key components: the Slice/Service
Type (SST) and the Slice Differentiator (SD). The SST classifies the slice according to gen-
eral service categories such as eMBB, URLLC, and mMTC, ensuring that UE connects to
a slice optimized for its specific service needs. The optional SD provides finer distinctions
within an SST, allowing multiple slices under the same service type. For example, within the
eMBB, one SD might support high-definition video streaming while another is for virtual
reality applications.

While RBs and PRBs are the foundational structure for time-frequency resource alloca-
tion, they operate uniformly across the entire carrier bandwidth. However, as 5G extends into
wider frequency ranges and supports heterogeneous services, this one-size-fits-all approach
becomes insufficient to efficiently address each use case’s unique requirements.

To overcome these limitations, 5G NR introduces Bandwidth Parts (BWPs) to partition
the carrier bandwidth into smaller, customizable segments. A BWP is defined as a subset of
contiguous resource blocks within the carrier bandwidth, and it operates with specific config-
urations such as subcarrier spacing, cyclic prefix length, and the number of resource blocks
it spans. BWPs are particularly effective in addressing the coexistence of diverse services
within a single carrier. For instance, a BWP designed for eMBB may span a large number of
RBs to provide the high throughput required for video streaming, while another BWP within
the same carrier might cater to URLLC applications, with configurations optimized for low
latency and high reliability. This segmentation ensures that resources are allocated precisely

where they are needed, avoiding waste and interference.

2.1.5 RAN Dupplexing

Duplexing methods are essential in wireless communication systems to enable two-way
communication between UE and the base station. The two primary duplexing techniques
employed in RAN are Time Division Duplexing (TDD) and Frequency Division Duplexing
(FDD). Each method has distinct operational characteristics, advantages, and challenges that

influence its suitability for different deployment scenarios and service requirements.

26 Chapter 2. Background

TDD operates by allocating separate time slots for UL and DL transmissions within the
same frequency band. This temporal separation allows for dynamic adjustment of UL and DL
resource allocation based on real-time traffic demands. For example, in environments where
downlink traffic dominates, such as in video streaming applications, the system can allocate
more time slots to DL transmissions, thereby optimizing overall network efficiency. TDD
also facilitates easier implementation of advanced techniques like beamforming and Massive
MIMO, as the same frequency resources are used for both transmission and reception, sim-
plifying channel state information acquisition. However, TDD presents challenges related
to synchronization, especially in heterogeneous network deployments with varying cell sizes
and traffic patterns. Precise timing synchronization is critical to prevent interference between
cells operating in adjacent time slots. Additionally, TDD systems are more susceptible to is-
sues arising from propagation delays, which can complicate the design of guard periods that

separate UL and DL transmissions to mitigate interference.

FDD, on the other hand, assigns distinct frequency bands for uplink and downlink com-
munications. This simultaneous transmission and reception on separate frequency bands en-
able continuous two-way communication without the need for time slot synchronization.
FDD is particularly advantageous in scenarios with consistent and balanced UL and DL traf-
fic, providing stable and predictable performance. Its inherent ability to support full-duplex
operation makes it well-suited for traditional cellular deployments where coverage and capac-
ity are balanced. The primary drawback of FDD lies in its inflexibility to adapt to asymmetric
traffic patterns, which are increasingly common in modern applications where downlink de-
mand often exceeds uplink requirements. Additionally, FDD requires paired spectrum, mean-
ing that twice the amount of spectrum is needed compared to TDD for equivalent UL and DL

capacities. This can be a limiting factor in spectrum-constrained environments.

In 5G NR, both TDD and FDD are supported for diverse deployment scenarios. TDD is
favored in high-frequency bands, such as millimeter wave (mmWave) bands, where the ben-
efits of dynamic UL/DL allocation and advanced antenna technologies are most pronounced.
Conversely, FDD remains prevalent in sub-6 GHz bands, where its stability and efficiency in
handling balanced traffic make it a reliable choice for wide-area coverage and legacy network

integration.

In the context of URLLC, achieving the stringent requirements of low latency and high re-

liability necessitates advanced configurations of duplexing methods within the RAN. While

2.1.5 RAN Dupplexing 27

FDD offers stable and simultaneous UL and DL communication using separate frequency
bands, it lacks the flexibility needed for rapid UL/DL switching. Conversely, Time Division
Duplex (TDD) utilizes a single frequency band, dynamically dividing time slots between
UL and DL, making it particularly advantageous for latency-sensitive applications such as
URLLC. The Fig. P.§ illustrates Time Division Duplexing (TDD) periodicity configurations
used in 5G NR, highlighting the allocation of Downlink (D), Uplink (U), and Special (S) slots
for different periodicities (5 ms, 2.5 ms + 2.5 ms, 2.5 ms, and 2 ms). The 5 ms periodicity, the
default configuration, provides a stable UL/DL pattern but introduces higher latency, making
it suitable for enhanced Mobile Broadband (eMBB). The 2.5 ms and 2 ms configurations re-
duce periodicity, allowing for faster UL/DL switching and lower latency, which are essential
for Ultra-Reliable URLLC. Shorter periodicities improve response times and reduce Round-
Trip Time (RTT) but may slightly impact throughput due to more frequent Special (S) slots
for guard intervals. This flexibility in periodicity demonstrates how TDD adapts to diverse

latency and throughput requirements, making it a cornerstone for real-time 5G applications.

| 5 ms Periodicity |

Figure 2.8: TDD periodicities with different configurations.

As highlighted in our study, optimizing TDD configurations plays a pivotal role in reduc-
ing RAN latency. By shortening the TDD cycle duration—configuring 2 ms cycles instead of
the default 5 ms in OpenAirlnterface—we achieved more frequent uplink/downlink switch-
ing, facilitating faster response times and lower buffer occupancy in the RLC layer. Fig. 2.9

combines our two key measurements: the Round-Trip Time (RTT) for each TDD periodicity

28 Chapter 2. Background

and the corresponding RLC buffer occupancy in bytes. The 2 ms configuration yields the
lowest RTT, making it ideal for URLLC, and also minimizes RLC buffer usage, confirming
more efficient data handling under rapid TDD switching. Further improvements were ob-
tained by fine-tuning parameters such as slot-ahead, setting the UL max frame inactivity to

zero, and employing a low-latency UPF via DPDK/eBPF.

RTT per TDD Configuration

167 | I Configuration

—e— 5Sms-tdd

---- 5ms-tdd Avg: 11.29 ms
141+ " | | . —e— 25ms-tdd

-- 2.5ms-tdd Avg: 7.94 ms
10 \
8— = 3 = I

—o— 2ms-tdd
K ! o Vi
AT x SRy ¥
1 . Hl RS SN, S y A
64— | | y m —4— 2ms TDD (Uplink)

RLC UL TXBUF Occupancy Bytes per TDD Config

---= 2ms-tdd Avg: 7.19 ms
| 1007
i

TXBUF Occupancy Bytes (Log Scale)

}Th '{’ \ Configuration
(J(EE —e— 5ms TDD (Uplink)
ll ! -#- 25ms TDD (Uplink)
0 20 10 60 80 100 120 140 160 10 15 20 25 30 35 40 45 50
Sequence Number Time (s)

(o) Measured RTT for different TDD periodici- (B’) RLC buffer occupancy under each TDD cy-

ties. cle.

Figure 2.9: Impact of TDD cycle duration on latency (RTT) and RLC buffer occupancy in an
OpenAirInterface 5G testbed.

2.1.6 Software-Defined RAN
Introduction to SDN

Software-Defined Networking (SDN) is a transformative networking paradigm designed
to centralize control over network operations, shifting decision-making processes away from
individual network devices to a central controller with a global network view. In traditional
networks, routers and switches independently make forwarding and routing decisions based
on their local configurations. In contrast, SDN decouples these responsibilities by separating
the Control Plane (CP) from the User Plane (UP). This separation introduces network pro-
grammability, enabling more flexible and dynamic network management [23,24]. The SDN
architecture consists of three key layers: the User Plane (Data Plane), the Control Plane, and

the Application Layer. At the lowest layer, the User Plane comprises network devices, such

2.1.6 Software-Defined RAN 29

as SDN-enabled switches, responsible solely for forwarding packets based on rules set by
the Control Plane. These switches do not make autonomous routing decisions. If an incom-
ing packet does not match any pre-defined rules in the device’s flow table, it is escalated to
the central controller via an out-of-band communication channel.

The SDN architecture is illustrated in Fig. R.10. Above the UP resides the CP, which
houses the SDN controller. This centralized controller acts as the brain of the network, re-
sponsible for routing, traffic engineering, and policy enforcement. Upon receiving a packet
that a switch cannot handle, the controller evaluates the packet using its global network state,
determines the optimal path or action, and then instructs the switch on how to forward the
packet. Communication between the controller and the User Plane happens through a stan-
dardized southbound interface, with OpenFlow emerging as the widely accepted protocol for
this purpose. OpenFlow abstracts network devices through flow tables, where each flow entry
specifies matching criteria (e.g., IP addresses, VLAN tags) and corresponding actions (e.g.,

forward to a port, drop, or modify).

Business Applications

Applications
~— @ADOn

API
SDN Controller
Control
Layer Control Plane

Control &
Data Plane Interface
(eg., Openflow}
Forwarding Data Data Data
Laver Plane Plane Plane

Network Network Network
Device Device Device

Figure 2.10: SDN Architecture

The Application Layer introduces programmability to the network at the highest level
via northbound interfaces. These interfaces allow applications to interact with the SDN con-
troller, facilitating the creation and enforcement of network policies such as load balanc-
ing, security rules, or QoS optimizations. The northbound interface abstracts the underly-

ing network complexity, allowing developers to design applications without concern about

30 Chapter 2. Background

hardware-specific configurations. Effectively, the SDN controller functions as a Network Op-
erating System (OS), offering a platform for developing and deploying network applications
similarly to traditional OS platforms supporting computer software applications. By decou-
pling the CP and the UP, SDN offers significant advantages, including centralized visibility,

dynamic policy enforcement, simplified network management, and reduced operational costs.

O-RAN

The Open Radio Access Network (O-RAN) represents a paradigm shift in wireless net-
work architectures by introducing openness, flexibility, and programmability into the tradi-
tionally closed and vendor-specific RAN ecosystem. By adopting the SDN logic, the funda-
mental goal of O-RAN is to enable interoperability across multi-vendor components, reduce
costs, and foster innovation by disaggregating RAN functions and introducing standardized
interfaces [25]. At its core, O-RAN is designed around a service-oriented architecture, focus-
ing on intelligent control, network automation, and Al-driven optimizations.

The architecture is primarily driven by the RAN Intelligent Controller (RIC), which is
divided into two functional domains: the Near-Real-Time RIC (Near-RT RIC) and the Non-
Real-Time RIC (Non-RT RIC). The Near-RT RIC, as illustrated in Fig. R.11], executes time-
sensitive control tasks, such as traffic steering, mobility management, and interference miti-
gation, with a latency range of 10ms to 1s. This controller hosts cloud-native microservice-
based applications, referred to as xApps, which enhance RAN spectrum efficiency by dy-
namically adjusting key network parameters, including transmission power and scheduling
policies. Meanwhile, the Non-RT RIC, operates at a higher abstraction layer, performing
tasks such as policy enforcement, performance analytics, and AI/ML model training. The
communication between Non-RT and Near-RT RIC is standardized through the A1 interface.

A critical component enabling communication between the Near-RT RIC and other RAN
components is the E2 interface, which serves as a standardized interface connecting the RIC to
E2 nodes, including the DU, CU-CP, CU-UP, and even eNB nodes in 4G networks. The E2 in-
terface supports both control procedures and data collection mechanisms across these nodes.
It allows the RIC to dynamically manage resource allocation, traffic engineering, and load
balancing across cells, slices, QoS classes, or even specific UEs. Furthermore, as it shown
from Fig. the E2 Application Protocol (E2AP) operates on top of SCTP (Stream Con-

trol Transmission Protocol) over IP, ensuring reliable message delivery between the RIC and

2.1.6 Software-Defined RAN 31

E2 nodes. These E2AP messages can embed E2 Service Models (E2SMs), which implement
functionalities such as RAN metric collection and control command enforcement, providing
granular visibility and dynamic control over network resources. The E2 interface facilitates
four primary services provided by the Near-RT RIC: REPORT, CONTROL, INSERT, and
POLICY. The REPORT service enables periodic or event-triggered metric reporting from the
RAN nodes to the Near-RT RIC, offering real-time visibility into network performance. The
CONTROL service dynamically adjusts network parameters to address real-time demands,
while the INSERT service allows on-demand configuration changes to optimize performance.
Lastly, the POLICY service enforces high-level policies across network slices, QoS classes,
and user-specific configurations. These services are combined in Service Models (E2SMs)

to simplify and standardize their implementation across different vendor solutions.

Service Management and Orchestration Framework

Non-Real Time RIC o1

: Near-Real Time RAN —
E Intelligent Controller (RIC)

NG-u

Xn-c
NG-C

VinM

| v = COTS / White Box / Peripheral Hardware and

Virtualization layer

Figure 2.11: The O-RAN Architecture.

Moving to the broader O-RAN architecture, the system is built upon modular compo-
nents, including the Radio Unit (O-RU), Distributed Unit (O-DU), and Centralized Units
(O-CU-CP and O-CU-UP), all connected via the Open Fronthaul Interface. The O-RU han-
dles radio frequency operations, while the O-DU and O-CU perform data processing and
control tasks. Communication between these units and the RICs occurs through standardized
interfaces, such as E1, F1, and E2. The E2 interface serves as the link between Near-RT RIC
and these units, enabling both real-time control and periodic metric reporting. Additionally,
the Infrastructure Management Framework, provides virtualization capabilities through Vir-
tual Infrastructure Manager (VIM), allowing dynamic resource allocation across hardware

and software components.

32 Chapter 2. Background

The O-RAN architecture emphasizes cloud-native deployments, where network functions
are implemented as containerized microservices orchestrated by platforms like Kubernetes.
This approach not only ensures scalability and resilience but also simplifies updates and main-
tenance across distributed network deployments. Moreover, the separation of functionalities
across Near-RT RIC, Non-RT RIC, and modular hardware components facilitates a multi-

vendor environment, resulting in reducing costs.

E2AP Services
E2 Setup * Report « Insert + Control « Policy
E2 Indication
E2 Reset
Near-RT RIC Service Update
Combined in

Service Models

...

Figure 2.12: E2 Packet Structure.

2.1.7 Key Core Network Functions

In the evolution toward 6G networks, there is a consistent emphasis on embedding intelli-
gence into core network operations. Achieving this requires a comprehensive understanding
of the network’s current state, including dynamic user demand patterns, precise subscriber
locations, and granular network performance metrics. A set of pivotal core network func-
tions collectively contribute to this knowledge layer, enabling data-driven and context-aware
decision-making across the network. We focus our study on the following key core network

functions:

User Plane Function (UPF)

As discussed in subsection P.1.1|, the UPF plays a pivotal role in managing user data
traffic, enforcing policies, and overseeing data forwarding. By continuously monitoring user
plane activity, the UPF provides valuable real-time insights into traffic distribution, network
load conditions, and user behavior patterns—essential factors for intelligent resource alloca-
tion and congestion management. The N3 interface, in particular, can be leveraged for gran-
ular flow and packet analysis, offering data that can be fed directly into machine learning

models for traffic classification and user demand prediction.

2.1.7 Key Core Network Functions 33

Network Data Analytics Function (NWDAF)

The NWDAF serves as a critical component in the 5G core network architecture, designed
to address the increasing complexity of managing dynamic network environments. Positioned
within the Service-Based Architecture (SBA) framework, NWDAF functions as an intelligent
data analytics engine, collecting, processing, and analyzing vast volumes of network data to
enable informed decision-making and efficient network optimization.

At the core of NWDAF lies a modular architecture composed of key functional blocks as
illustrated in Fig. .13, including the Data Collection Module, Data Storage Layer, Analytics
Engine, Model Management, and Exposure Interface. The Data Collection Module inter-
acts with various network functions, AMF, SMF, and Policy PCF, to gather diverse datasets.
These datasets include real-time user behavior metrics, traffic flow information, and quality-
of-service (QoS) parameters. Once collected, the data is fed into the Data Storage Layer,
which serves as a robust repository capable of handling both structured and unstructured
data formats. The Analytics Engine, which forms the brain of NWDAF, processes the col-
lected data using advanced statistical analysis and machine learning algorithms. This engine
is responsible for identifying patterns, detecting anomalies, and forecasting network behav-
ior, such as predicting congestion hotspots or estimating future resource demands. Machine
learning models deployed within NWDAF are continuously trained, validated, and updated
by the Model Management component. Data flow within NWDAF follows a well-defined
sequence. Initially, the Data Collection Module ingests data from subscribed sources across
the network, including metrics from RAN and UE. This data undergoes pre-processing to
filter out noise and ensure consistency before being fed into the Analytics Engine. The en-
gine then processes the information, generates predictions, and identifies actionable insights,
which are disseminated through the Exposure Interface. Network functions such as the PCF
can subsequently use these insights to refine policy control, while the SMF can dynamically

allocate resources to address predicted congestion or service degradation.

Location Management Function (LMF)

The LMF is a critical component within the SGC, primarily responsible for determin-

ing and managing the geographical positions of UE. Operating in conjunction with AMF

34 Chapter 2. Background

Data sources

NF r
NWDAF
— l | oA]
i Analytics ‘ | ,I AF
UDR Model T .
- OAM
OAM
Data Analytics

AF: Application Function Output

NF: Network Function

NWDAF: Network Data Analytics Function
OAM: Operation and Management

UDR: Unified Data Repository

Figure 2.13: NWDAF Architecture in the 5G System.

and the RAN, the LMF facilitates precise positioning services essential for various appli-
cations, including emergency services, location-based offerings, and network optimization
strategies [26, 27]. A key feature of the LMF is its utilization of multi-cell RTT measure-
ments. This technique involves calculating the time taken for signals to travel from the UE to
multiple base stations and back. By analyzing these time measurements from several cells, the
LMF can accurately triangulate the UE’s position, even in challenging environments where
traditional single-cell measurements might be inadequate. Specifically, the multi-cell RTT
introduced in 3GPP Release 16 leveraging sounding reference signals (SRS) sent from the

UE and Positioning Reference Signals (PRS) received from multiple base stations (BS) as
illustrated in Fig.

Each cell operates independently of the UE’s position, enabling high scalability and ef-
ficient resource allocation. Multi-Cell RTT also facilitates seamless handovers and dynamic
load balancing by predicting UE movement, ensuring optimal connectivity. Additionally, it
supports service migration in Mobile Edge Computing (MEC) by dynamically reallocating

tasks to the nearest edge servers, reducing latency and enhancing responsiveness. [28].

Beyond positioning, the LMF’s capabilities in multi-cell RTT measurements significantly
contribute to load balancing during handovers and service migrations. In scenarios where
a UE moves through areas served by multiple cells, the LMF assesses real-time location
data to predict the UE’s trajectory and service requirements. This proximity reduces latency
and improves service responsiveness, which is vital for applications requiring real-time data

processing.

2.2 Multiple Access Edge Computing 35

Location Server n
i !_I_\

NRPPa

A

) PRS/SRS

Measurements for
UL AoA

UL RSRP Measurements for
UL RTOA DL RSRP per beam/gNB
gNB Rx-Tx time difference L DLRSTD

UE Rx-Tx time difference

Figure 2.14: Multi-Cell RTT reporting in LMF.

2.2 Multiple Access Edge Computing

2.2.1 Introduction

Multiple Access Edge Computing (MEC) is a transformative paradigm in modern net-
work architectures that aims to bring computational resources, storage, and network services
closer to end-users and [oT devices. Unlike traditional cloud computing architectures, where
data and applications are processed in centralized data centers, MEC decentralizes these ser-
vices, enabling real-time data processing at the edge of the network. This proximity reduces
latency, enhances bandwidth efficiency, and ensures localized data processing, which is crit-
ical for latency-sensitive applications such as autonomous vehicles, augmented reality (AR),
virtual reality (VR), and industrial automation [2,29].

MEC was originally standardized by the European Telecommunications Standards Insti-
tute (ETSI) and aimed at mobile networks. Today, it has evolved to support not only mobile
networks but also other access technologies such as Wi-Fi, fixed broadband, and satellite
communications. MEC nodes are typically deployed within base stations, access points, or
regional data centers, allowing them to process and serve user requests more efficiently. The

architecture leverages both virtualization technologies and cloud-native principles, enabling

36 Chapter 2. Background

dynamic scalability and resource allocation based on real-time demand.
In essence, MEC bridges the gap between cloud computing and end-users by distributing
computational power and storage closer to data sources, thereby addressing key challenges

such as network congestion, limited bandwidth, and latency constraints.

2.2.2 Cloud vs Edge

While both cloud computing and edge computing share the goal of delivering scalable
computational resources, they differ fundamentally in terms of geographical proximity, la-
tency, and resource management. Cloud computing relies on large, centralized data centers
that provide vast computational power and storage capabilities. These data centers are typi-
cally located far from end-users, introducing network latency and increased data transmission
costs for applications requiring real-time processing [30]. This architecture excels at handling
large-scale data analytics, long-term storage, and computationally intensive tasks that are not
latency-sensitive.

In contrast, edge computing shifts computational tasks closer to end-users, often at the
network edge or near access points such as base stations, access routers, or localized edge
servers. This architectural difference drastically reduces latency, making edge computing
ideal for latency-sensitive applications such as URLLC, industrial IoT, and smart city in-
frastructures. By processing data closer to the source, edge computing minimizes the delays
associated with data traversal across long network paths and reduces congestion on core net-
works [31]].

For instance, in a cloud-based system, data generated by autonomous vehicles must travel
long distances to centralized cloud servers for processing and analysis. This introduces de-
lays that can be detrimental in time-critical scenarios, such as collision avoidance. In an edge-
based system, the same data can be processed locally at a MEC node within milliseconds,
enabling faster decision-making and ensuring safer vehicle operations. Moreover, data pri-
vacy and security are often better managed at the edge, as sensitive data can be processed
and analyzed locally rather than being transmitted over potentially insecure long-distance
connections to centralized cloud data centers.

Despite their differences, cloud computing and edge computing are not mutually exclu-
sive technologies. Instead, they can work synergistically in a hybrid cloud-edge architecture

to deliver optimal performance, efficiency, and scalability. In this hybrid model, latency-

2.2.3 Placing MEC in Telecom Networks 37

sensitive tasks are processed at the edge, while resource-intensive tasks—such as large-scale
data analytics, Al model training, or archival storage—are offloaded to centralized cloud

infrastructures.

2.2.3 Placing MEC in Telecom Networks

The deployment of MEC has its origins in the architectures of LTE/4G networks, where
ETSI proposed various strategic placements for MEC hosts. These placements aimed to bal-
ance latency, network efficiency, and resource accessibility based on their physical location
within the network architecture [32].

One of the initial deployment models was MEC over the SGi interface. In this architec-
ture, the MEC host is positioned on the network’s backhaul, specifically before the Serving
Gateway and Packet Gateway on the SGi interface. As shown in Fig. .15, placing MEC
closer to the core network offers more accessible services to network users but introduces
a significant drawback in terms of latency. The RTT increases due to the physical distance
between the UE and the core network infrastructure. As a result, this setup resembles tradi-
tional cloud computing models, where latency-sensitive applications may not see substantial
performance improvements. The UL flow in this setup follows the sequence: UE — eNodeB
— CORE — MEC.

To address the limitations of SGi placement, MEC over the S1 interface was introduced as
an alternative deployment model. In this architecture, the MEC host is positioned between the
eNodeB and the centralized core site, as shown in Fig. R.16. By being closer to the Fronthaul
network, MEC reduces RTT latency, enhancing the responsiveness of time-sensitive appli-
cations. With this placement, packet flows follow the sequence: UE — eNodeB — MEC —
CORE. The proximity of the MEC to the user equipment significantly reduces latency and

improves the overall QoS for real-time applications.

In the evolution towards 5G and Beyond-5G networks, MEC placements have adapted
to more disaggregated architectures, leveraging the separation of CUs and DUs. A promi-
nent approach involves deploying MEC hosts directly adjacent to DUs on the Fronthaul net-
work [33]. In this architecture, the UL path is configured as: UE — DU — MEC — CU, as

38 Chapter 2. Background

ME Host

ME

Mp1 Mp1l

Distributed CN

ME platform
Centralized CN site

Mp2 |
56
—ME data plane SGW | PGW

MME

Figure 2.15: MEC on the SGi interface.

MEC Host
Centralized CN site

)) MEC
S1-U SGW —— PGW
T T Mp2
) S1-uU Data pla
t t ructuy
MME
UE — OB /

: S1-MME

Figure 2.16: MEC on the S1 interface.

illustrated in Fig. R.17. This configuration enables ultra-low latency communications, par-
ticularly beneficial for services requiring near-instantaneous processing, such as vehicle-to-
everything (V2X) and augmented reality (AR) applications. Communication in this setup
relies heavily on the F1 Application Protocol, which standardizes interactions between CUs
and DUs. The MEC Agent, integrated with the MEC host, plays a critical role in facilitat-
ing communication between DUs and MEC services. Specifically, the MEC Agent manages
the Radio Network Temporary Identifiers (RNTIs) for the UEs, ensuring that requests and
responses are accurately mapped between the DUs and the MEC services. When a DU has
data packets to transmit to the MEC, it generates a MEC Data Request message. The MEC
Agent intercepts this message, processes it, and routes the payload (user data packets) to the
appropriate MEC service. Similarly, when data is sent from a MEC service back to a UE, the
MEC Agent generates a MEC Data Indication message to ensure delivery to the appropriate
DU.

The UPF can also act as a MEC server, offering enhanced capabilities for edge comput-

ing workloads. The UPF serves as a gateway that handles user plane traffic, enabling traffic

2.2.3 Placing MEC in Telecom Networks 39

Backhaul

Network
Central Unit (CU) 5G-CORE

MEC Agent
. 1 \‘ Fronthaul
J ‘ Network

Distributed Distributed Distributed
Unit (DU) - 5G Unit (DU) - 4G Unit (DU) —
WiFi

RLC RLC
MAC MAC MAC
PHY PHY PHY

Figure 2.17: Placing MEC next to DUs.

steering, routing, and filtering functionalities. Placing MEC servers adjacent to or integrated
with UPFs creates a highly efficient architecture where user data packets can be processed
locally at the edge of the network, reducing backhaul traffic and minimizing latency. Addi-
tionally, MEC can also be colocated with the CU-UP to further optimize traffic management
and processing. The CU-UP is responsible for managing user-plane functionalities such as
packet forwarding and QoS enforcement. By integrating MEC services directly with CU-
UP nodes, user data can bypass unnecessary network hops, allowing ultra-fast processing at
the edge. Specifically, in centralized deployments, UPFs support high-capacity applications
(e.g., eMBB) but suffer from higher latency. In contrast, localized deployments colonize
MEC, UPF, and CU-UP near DUs, ensuring ultra-low latency for services such as URLLC
and industrial automation, as illustrated in Fig. R.18.

[cu-cp } """"""" { cu-vp] CU-UPat Central Site
for eMBB slice/services
which needs high capacity.

‘ DU H cu-up I UPF MEC

RU /MMU CU-UPatLocal Site
for URLLC, MEC slice/services

which needs low latency and local breakout.

Figure 2.18: MEC Deployments in beyond 5G Networks.

40 Chapter 2. Background

2.2.4 MEC Type Deployment - Virtualization Technologies

The deployment of a MEC host relies heavily on virtualization technologies to ensure
scalability, flexibility, and efficient resource utilization across distributed edge nodes. Vir-
tualization enables MEC to host diverse services and applications dynamically while opti-
mizing hardware resources. This subsection explores the key virtualization technologies em-
ployed in MEC deployments, including Virtual Machines (VMs), Containers, and supporting
frameworks such as Network Function Virtualization (NFV) and Service Orchestration. In
the following, we list the main technologies:

Virtual Machines: VMs are one of the earliest virtualization technologies used in MEC
deployments. A VM emulates a complete hardware environment, allowing multiple operat-
ing systems and applications to run on a single physical server. VMs are managed by hy-
pervisors such as KVM (Kernel-based Virtual Machine) and VMware ESXi, which enable
hardware-level isolation and resource allocation. In the MEC context, VMs are often used for
applications requiring strong isolation, such as security services, mission-critical workloads,
or legacy applications that depend on specific OS configurations. However, VMs have rel-
atively higher overhead in terms of memory and CPU usage, making them less suitable for
resource-constrained edge environments.

Containers: As observed in Fig. .19, in contrast to VMs, containers offer lightweight
virtualization by sharing the host operating system’s kernel while isolating applications and
their dependencies. Containers are characterized by low resource overhead, faster startup
times, and high portability, making them ideal for microservice-based MEC architectures.
Each MEC application can run as an independent containerized service, enabling rapid scal-
ing, efficient resource allocation, and simplified deployment across distributed edge nodes.
For example, a video analytics application deployed in MEC can scale container instances

dynamically based on demand, ensuring uninterrupted performance during traffic surges.

Network Function Virtualization: NFV plays a crucial role in MEC by decoupling net-
work functions, such as firewalls, load balancers, and packet inspection tools, from dedicated

hardware appliances. These network functions are deployed as Virtual Network Functions

2.2.5 Edge Service Live Migration 41

Server
Container
process
Host Container
user-space process VM VM VM
processes
Container
manager
Host's kernel Hypervisor
Host’s hardware

Figure 2.19: VMs vs Containers.

(VNFs) on MEC servers. NFV enables dynamic deployment and scaling of VNFs across edge
nodes, ensuring that network resources are allocated efficiently based on traffic patterns and
service demands. In MEC deployments, NFV allows service providers to create virtualized
instances of edge services on demand, improving flexibility and resource utilization.
Service Orchestration: To manage virtualized resources and services in MEC deploy-
ments, orchestration frameworks such as OpenStack and Kubernetes are widely used. These
platforms provide end-to-end automation for deploying, scaling, and managing MEC appli-
cations. Kubernetes (will be discussed further in the .4 section), in particular, has become
the de facto standard for managing containerized applications in MEC environments due to

its robust orchestration capabilities, self-healing mechanisms, and seamless scaling features.

2.2.5 Edge Service Live Migration

Edge Service Live Migration is a critical capability in MEC that enables the seamless
transfer of running services, applications, or workloads from one edge node to another with-
out disrupting their operation. This functionality is essential in dynamic network environ-
ments, where factors such as user mobility, resource availability, and network congestion re-
quire flexible and real-time resource reallocation. Live migration ensures service continuity,
low latency, and optimized resource utilization. In edge computing environments, end-users
often move across geographical regions. If a service is anchored to a single MEC node, user
mobility can result in increased latency and degraded service performance as the physical

distance between the user and the service-hosting MEC node increases. Live migration ad-

42 Chapter 2. Background

dresses this challenge by dynamically transferring workloads to the nearest MEC node, main-
taining optimal performance and uninterrupted service delivery. Additionally, live migration
is beneficial in scenarios where an MEC node becomes overloaded due to high computa-
tional demand or faces resource constraints. By offloading certain services to less congested
MEC nodes, network operators can balance workloads effectively, preventing performance
bottlenecks.

During live migration, the ideal scenario is to maintain critical states, including kernel
state, active TCP/IP connections, application state, and sockets. However, maintaining these
states can face significant challenges, such as long downtime caused by the large number of
memory pages that must be copied between the source and target MEC nodes. Furthermore,
network connectivity between the source and target nodes plays a crucial role in determining
migration success. These constraints have led to two main categories of migration: stateful
migration and stateless migration. In stateful migration, the application and network con-
nection states are preserved, ensuring a seamless transition with minimal impact on service
availability. Conversely, in stateless migration, network connections are lost, but memory
pages and disk contents are successfully transferred, allowing the application to resume on
the target node.

Service live migration in MEC relies on VMs and containers, with support from NFV and
SDN. VM-based migration, managed by hypervisors like KVM and VMware ESXi, offers
strong isolation and reliable resource encapsulation. However, it remains resource-intensive
and may introduce latency during migration, making it less suitable for latency-sensitive ser-
vices. In contrast, container-based migration, facilitated by platforms such as Docker and Ku-
bernetes, provides a lightweight alternative with faster recovery times and minimal overhead.
Tools like CRIU (Checkpoint/Restore In Userspace) enable the state of running containers,
including open files, memory state, and network connections, to be saved and restored during
migration. This approach significantly reduces downtime and ensures smoother transitions.

Having a VM Live Migration as a reference, the live migration process typically involves

three main phases:

1. Pre-Migration Phase: The MEC system analyzes parameters such as service state,
resource availability, and network conditions to determine whether live migration is
necessary. Migration policies, such as maintaining latency thresholds or resource load

balancing, guide this decision.

2.2.5 Edge Service Live Migration 43

2. Migration Phase: During this phase, the active state of the service is transferred from
the source MEC node to the target MEC node. Depending on the virtualization tech-

nology migration can follow different approaches:

* Pre-copy Migration: In this method, memory pages from the source VM are
copied iteratively to the target node while the VM continues to run on the source
node. During the initial phase, modified memory pages (dirty pages) are tracked
and transferred incrementally to the target node. Once the number of dirty pages
stabilizes and becomes smaller than the number of pages transferred per iteration,
the VM is paused, and the remaining memory pages are transmitted to the target
node. The VM is then resumed on the target node with minimal downtime. Pre-
copy migration has the advantage of shorter perceived downtime but often results

in a higher total data transfer volume.

+ Post-copy Migration: In contrast, post-copy migration begins by pausing the
VM on the source node and transferring only the minimal processor state to the
target node. Once the VM resumes execution on the target node, the remaining
memory pages are fetched on demand from the source node over the network.
While post-copy migration reduces the total amount of data transferred, it is more
prone to performance degradation if network instability or connectivity issues

arise during the migration process

3. Post-Migration Phase: After the migration, the target node takes over the service, and
final consistency checks are performed to ensure that all states and dependencies have

been accurately transferred. The source node then releases its resources.

As shown in Fig. 2.20, pre-copy migration typically results in a larger data transfer vol-
ume compared to post-copy migration, but it benefits from shorter service downtime due to
adaptive algorithms for managing dirty pages [34]. On the other hand, post-copy migration
minimizes data transfer but risks service interruption if critical memory pages are delayed

during retrieval.

While live migration offers significant benefits, it also introduces several challenges. La-

tency sensitivity is critical, especially for URLLC applications, where even minimal delays

44 Chapter 2. Background

Preparation (live) Resume Time

Downtime

=

Pre-Copy Rounds ...
P S

Round: 1 2 3..N (Dirty Memory)

(a) Pre-Copy Timeline

Preparation (live) Resume Time (live)

’/Downtime
'@ Post-Copy Prepaging

(Non-pageable
Memory)

(a) Post-Copy Timeline

Figure 2.20: Pre-Copy vs Post-Copy Migration.

can disrupt performance. Maintaining data consistency between the source and target nodes is
equally important, particularly for stateful applications handling transactional data. Addition-
ally, resource constraints at edge nodes, with limited computational power and storage, make
it difficult to allocate resources without disrupting other services. Finally, network bandwidth
is crucial, as insufficient capacity can prolong migration times and increase service down-

time.

2.3 Artificial Intelligence and Machine Learning Introduc-

tion

Al and ML techniques have increasingly gained significance in addressing complex and
dynamic problems encountered within telecommunication networks. By providing the capa-
bility to automatically analyze data, identify intricate patterns, and make intelligent decisions,
these techniques are fundamental for optimizing telecommunication network performance,
reliability, and adaptability. In this section, we present a thorough review of the core princi-
ples and architectures employed within AI/ML, focusing particularly on the methodologies
applied throughout this thesis, including classical machine learning, deep learning with em-

phasis on time-series prediction, and reinforcement learning.

2.3.1 Machine Learning (ML) 45

2.3.1 Machine Learning (ML)

ML algorithms enable systems to learn from data patterns, improving predictions through
iterative training. In supervised learning, algorithms minimize a loss function representing

prediction error. A common loss function, Mean Squared Error (MSE), is defined as:

1 N
:NZ f@xz

where N is the number of training samples, y; the true label, fy(z;) the predicted output
of the model parameterized by 6, and (y; — fo(;))? measures the squared difference between

predictions and actual labels.

Support Vector Machines (SVM)

Support Vector Machines are powerful classification algorithms widely used for tasks
such as intrusion detection and anomaly identification in telecommunications. The funda-
mental idea of an SVM is to identify the optimal hyperplane that best separates data points
belonging to different classes. This hyperplane maximizes the margin between data points
from each class, providing robust generalization capability.

Formally, consider a dataset composed of data points (z;, y;), where z; € R¢ is the feature
vector and y; € {—1,+1} is the corresponding class label. An SVM identifies the separating
hyperplane defined by:

w-z+b=0 (2.2)

where:

* w is the normal vector to the hyperplane (decision boundary),
* 1z is the input feature vector,

* b is the bias term (intercept).

The SVM optimization problem seeks to maximize the margin, which translates into min-

imizing the magnitude of the vector w. The formal optimization problem can be written as:

mm_Hsz + CZ& (2.3)

=1

46 Chapter 2. Background

subject to the constraints:

where:

* |Jw|| is the Euclidean norm of the vector w, reflecting the complexity of the model.

» (' is aregularization parameter controlling the trade-off between maximizing the mar-
gin and minimizing the classification errors. A larger C' imposes a stricter penalty on

misclassification.

* &; are slack variables introduced to handle misclassifications and data points that fall
within the margin boundaries, allowing the model to cope with noise or non-linear

separations.

This optimization problem is solved using Quadratic Programming (QP) techniques, re-
sulting in an optimal hyperplane with strong classification performance even in high-dimensional
feature spaces. Furthermore, kernel methods, such as the Gaussian Radial Basis Function
(RBF), can be employed to map data into higher-dimensional spaces to enable nonlinear

classification:

K(zi,2;) = exp(—||z: — x;]|) (2.5)

where the parameter v defines the spread of the kernel function.

Random Forest (RF)

Random Forests are ensemble methods that consist of multiple decision trees trained on
various subsets of the data. RFs are especially useful due to their ability to handle large
datasets with high-dimensional feature spaces, providing robust predictions while mitigat-
ing overfitting.

Formally, an RF model aggregates predictions from individual decision trees as follows:

fRF(x) = % Z ftree,t(x) (26)

where:

2.3.2 Deep Learning (DL) and Neural Networks 47

T represents the total number of decision trees.
* fuees() is the prediction made by the ¢ decision tree for the input vector .

Each tree is constructed using a random subset of features and a bootstrapped sample of
the data points, thus encouraging diversity among individual trees and improving generaliza-
tion. Important hyperparameters include the number of trees (77), maximum depth of trees,
and the number of features randomly selected for splits.

In this thesis, ML techniques such as SVM, Random Forest, and Autoencoders form a
critical foundation for predictive and anomaly detection tasks within network infrastructures,
analyzed further in Chapter [j. Specifically, SVM and RF models are extensively utilized for
intrusion detection and security enhancement. By systematically selecting parameters such
as C' and vy (for SVM), the number and depth of trees (for RF) we utilize these algorithms to

achieve optimized performance in diverse real-world scenarios.

2.3.2 Deep Learning (DL) and Neural Networks

Deep Learning (DL) leverages hierarchical neural architectures—ranging from simple
feed-forward networks to sophisticated recurrent and convolutional models—to learn rich
representations from raw data. In the context of 6G networks, these models enable accurate
forecasting of traffic loads, real-time adaptation of radio resources, and robust anomaly de-
tection. Below we describe key DL architectures, their mathematical foundations, and how

each is applied to specific networking tasks.

Feed-Forward Neural Networks (FNNs)

A Feed-Forward Neural Network (FNN) comprises an input layer, one or more hidden
layers, and an output layer, with information flowing in one direction. Mathematically, for an

L-layer FNN:

MO =g, O =fWORED 1 pO) v=1,... L, §=WEDpE 4 pTHD,

Nah!

Here x is the feature vector (e.g., instantaneous bandwidth usage, CQI values), W © b(® are
learned parameters, and f is a nonlinear activation. The network is trained to minimize a loss
L(y,y) via backpropagation:

0 60—-—nVyL,

48 Chapter 2. Background

where § = {IWW® b}, FNNs serve as efficient baselines for static tasks in this thesis, such
as coarse classification of traffic types or regression of average throughput under moderate

variability.

Recurrent Neural Networks (RNNs)

RNNs introduce internal state to model sequences {z(!), ..., (™)}, At each time step t:
W = f(Wana®™ + Wi kD + b,), y® = g(Wy,h" +1,),

where h(®) captures information from all previous inputs. RNNs are thus well suited for
time-series forecasting of network metrics—such as short-term traffic spikes—where the im-
mediate past strongly influences predictions. However, standard RNNs struggle with long-range

dependencies.

Long Short-Term Memory (LSTM)

LSTM networks overcome RNN limitations via gated memory cells. Each cell computes:
Jo=0Wylhiy, 2] + by),
iv = o(Wilhe—1, z¢] + bi), C~th = tanh(Wehi—1, 2¢] + bo),
Co=f£0Ca+i00,
Oy = O'(Wo[ht_l, l’t] + bo); ht — O ® tanh(C’t).

Here, f; (forget gate) decides what past information to retain, ¢; (input gate) regulates new
information, and o, (output gate) controls exposure of memory. LSTMs excel in capturing
long-term patterns—essential for anticipating recurrent traffic patterns (e.g. daily peak hours)

and supporting proactive slice reconfiguration in Chapter 5.

Gated Recurrent Unit (GRU)

GRUs simplify LSTMs by combining gates:
2z =0(W.[he1, 2] +0.), 10 =0(Wplhi—1, 24 +0,),
ilt = tanh(Wh[rt @ ht—l; l’t] + bh), ht = (1 — Zt) @ ht—l + Zt @ ilt.
The update gate z; and reset gate r; control memory flow, reducing complexity while main-

taining performance. GRUs are particularly effective when computational resources are lim-

ited (e.g. at edge nodes) but sequence modeling beyond a few time steps remains critical.

2.3.3 Reinforcement Learning 49

Bidirectional RNNs (Bi-RNN5)

Bi-RNNs process sequences in both forward and backward directions:
7O = RNN(2®, B0D), 7 © = RNN(z, B 0+D),
and concatenate h® = [h®); h)], This dual context is invaluable when slice decisions
depend on both past trends and anticipated near-future conditions.
Convolutional Neural Networks (CNNs)

CNNs capture local patterns via convolutional filters. A 1D convolution over temporal

data is:

yzki (ZZ mck gf-rri lc+b§f)>'

c=1 m=1

Here, W filters detect motifs such as sudden traffic bursts across short windows. In Chap-
ter [§, CNNs serve as front-end feature extractors before feeding into LSTM layers, improving

detection of localized traffic anomalies.

Autoencoders

Autoencoders learn compact encodings / of input x and reconstruct z:
h= fac(@), &= faclh), Llz,@)=lz—32|l3.
Variants include:
* Sparse Autoencoders, adding a sparsity penalty » . KL(p || p;).
* Denoising Autoencoders, which reconstruct clean x from corrupted inputs z.

In Chapter g, autoencoders isolate anomalous network states: large reconstruction errors sig-

nal deviations from learned normal patterns, triggering security XApp responses.

2.3.3 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning that involves training
agents to make decisions by interacting with an environment to achieve specific objectives.

The agent learns optimal actions based on rewards received through these interactions, thus

50 Chapter 2. Background

maximizing long-term cumulative rewards. RL has been widely adopted in dynamic and se-
quential decision-making problems, such as telecommunications, autonomous driving, robotics,

and resource management in networks.

Core Concepts of Reinforcement Learning

The Reinforcement Learning framework comprises four fundamental elements: the agent,
the environment, states, and actions as depicted in Fig. R.21|. At each discrete timestep ¢, the
agent observes the current state s, € S of the environment and selects an action a; € A
according to a policy 7. After executing this action, the agent receives a scalar reward r; € R
and transitions to a new state s, 1. This process repeats iteratively, generating a sequence of

states, actions, and rewards known as a trajectory or episode.

’J Agent Il

state reward

\ action
S| |R i
E RH-l (
[R _
<] Environment]4

\

Figure 2.21: Overview of RL.

The primary goal of an RL agent is to discover an optimal policy 7* that maximizes the

expected cumulative discounted reward, defined as:

where v € [0, 1) is the discount factor, balancing immediate versus future rewards.

Markov Decision Processes (MDP)

Formally, an RL task is typically modeled as a Markov Decision Process (MDP), repre-
sented by the tuple (S, A, P, R,), where:

* S denotes the finite set of states.

2.3.3 Reinforcement Learning 51

» A denotes the finite set of actions.

* P(s441]8¢, ay) is the state-transition probability, specifying the likelihood of transition-

ing to state s, ; given the current state s; and action a,.

* R(s;,a;) is the reward function, providing a scalar feedback after taking action a, in

state s;.

* 7 is the discount factor, determining the relative importance of future rewards.

Value Functions and Bellman Equations

A critical concept in RL is the notion of value functions, quantifying the expected return

of following a policy 7. The state-value function V(s) for a given policy 7 is defined as:
Vi(s) = Ex [Gy|se = §]

Similarly, the action-value function @, (s, a) represents the expected return of choosing

action a in state s under policy 7:
Qr(s,a) = E; [Gy|sy = s,a; = d]

Both value functions satisfy recursive relationships known as the Bellman equations. For

the state-value function, the Bellman equation is:

Vi(s) =Y _mlals) Y P(s'r]s,a)fr +4Va(s))]

a s'r

For the optimal action-value function Q* (s, a), the Bellman optimality equation is defined

as:

Q"(s,0) = > P(s7ls,a) [r +ymax @' (s,)]

s'r
Deep Reinforcement Learning

When dealing with large and complex environments, traditional tabular RL methods be-
come impractical. Deep Reinforcement Learning (DRL) emerges as a powerful approach
by integrating deep neural networks as function approximators for value or policy functions.
Prominent DRL algorithms include Deep Q-Network (DQN), Deep Deterministic Policy Gra-
dient (DDPG), and Advantage Actor-Critic (A2C).

52 Chapter 2. Background

For instance, DQN leverages neural networks to approximate the optimal action-value
function Q*(s, a; 6) with network parameters 6. The network is trained by minimizing the

loss function:
L(9) =E [(yr — Q(st,a;0))?]

where vy, is the target value, computed as:
Yr = 1 +ymax Q(se1,0’5607)
a

and 6~ denotes parameters of a separate target network periodically updated from 6 to
stabilize learning.

Within this thesis, DRL is applied to telecommunications scenarios, particularly focus-
ing on Multi-access Edge Computing (MEC) service migration that presented in chapter A.
In MEC contexts, the DRL agent relocates edge services based on users’ real-time mobility
patterns and network conditions, significantly reducing latency and enhancing service conti-

nuity.

2.4 Experimental Tools and Methods

2.4.1 SLICES RI - Testbeds

SLICES Research Infrastructure (SLICES RI) [35] is a cutting-edge, large-scale experi-
mental platform designed to support research and innovation in networking and distributed
systems, specifically focusing on 5G, 6G, and beyond. As an advanced testing environment,
SLICES RI enables researchers to design, implement, and evaluate new technologies and pro-
tocols under real-world conditions while leveraging its distributed architecture for scalability
and diversity. The platform fosters collaboration by offering open access to resources for
academia, industry, and research institutions. SLICES RI integrates state-of-the-art testbeds,
providing support for a wide range of experiments in network virtualization, MEC, network
slicing, and cloud-native deployments. The infrastructure spans multiple geographically dis-
tributed sites, ensuring a heterogeneous environment for testing different network configu-
rations and deployment strategies.

In our experiments, we utilized two key testbeds that are part of SLICES RI: One Lab -
Sorbonne University [36] and the NITOS testbed [37] in Greece. These facilities provided

2.4.2 5G Experimentation Tools 53

the necessary infrastructure and flexibility to evaluate and validate our solutions in diverse

network environments.

* NITOS Testbed: It is hosted by the University of Thessaly in Greece, as a primary
facility for development and testing. NITOS is a remotely accessible, 24/7 testbed, de-
signed for advanced experimentation in wired and wireless networks. iT consists of
over 100 high-performance nodes, each equipped with Core-i7 processors, GPUs for
AI/ML experimentation, and multiple IEEE 802.11 a/b/g/n/ac wireless cards for WiFi
research, supporting open-source drivers like ath9/10k. Furthermore, LTE/5G research
capabilities are supported through more than 20 Software-Defined Radio (SDR) de-
vices, enabling customizable RAN operations, and six mmWave devices for creating
high-throughput wireless links and facilitating beam steering for various topologies.
All nodes connect through a tree-structured OpenFlow-enabled network comprising
hardware switches, ensuring seamless connectivity across the testbed. The testbed is

depicted in Fig. .22, while its architectural design is detailed in Fig. .23

Figure 2.22: Overview of the NITOS testbed.

* One Lab - Sorbonne University: This testbed offers advanced resources for conduct-
ing experiments on AI/ML-driven network optimizations and multi-access edge com-
puting. 1t is equipped with small cells, high-performance computing servers, and P4

switches.

2.4.2 5G Experimentation Tools

To evaluate and implement advanced concepts in 5G networks, this thesis relies on state-

of-the-art experimentation tools. These tools facilitate the development, testing, and opti-

54 Chapter 2. Background

=== Control Network
=== WiMAX/LTE Wireless Network
- - LTE Control Netwotrk

WiMAX Control Network {)
- == WiFi Network 7

e /,’ " \T\‘\\
& DL J L5 — o

& 7 wimaxesh LTE AP LTEAP
Users pom=———— Jemmmmmmak- k- A) R

5 i
- wimaxrf | "
i % g WA
n | wi MAXt Wii Smanph
USRP Dev

Internet \

o NITOS Server

]
LTEnet EPC

1
1

! Outdoor

- node node

B
LTE

!
Smartphones
= OutDoor
Testbed
L

WIMAX ~ WIiMAX LTE LTE
Interface Dongle Interface Interface Interface

_ camera _
@ | & | |/ Directional
- i‘.ﬁ i Antennas | &
3 3) g

ICARUS ICARUS ICARUS ICARUS InDoor

(& (% | cf" MobileNode Testoed
- - m ACM Cards
ICARUS ICARUS ICARUS ICARUS Power Monitori

Figure 2.23: NITOS testbed Nodes.

| AisE
: g
|

i

'

'

___.I_________-_____
o

OpenFlow Switch

'
'
'
'
|

'

USRP Device

mization of various 5G components, including RAN, core network functionalities, and con-

trol frameworks.

OpenAirlnterface

OpenAirinterface [38] is an open-source software platform that provides a fully func-
tional implementation of 5G and 4G Radio Access Network (RAN) and Core Network (CN)
components. Developed by the OpenAirlnterface Software Alliance (OSA), OAI supports
research and prototyping in real-time and simulated 5G environments. OAI follows 3GPP
standards and functionalities such as RAN slicing, dynamic resource allocation, and user
mobility management, making it a versatile tool for testing innovative solutions in 5G net-
works. OAI’s modular architecture allows for seamless integration with other 5G components
and supports deployment on Software-Defined Radios (SDRs) or simulated environments.
Its compatibility with 3GPP standards ensures researchers can evaluate new functionalities

while adhering to industry requirements.

FlexRAN

FlexRAN [39] is an open-source Software-Defined RAN platform designed to bring pro-
grammability and flexibility to RANs by decoupling the control plane from the data plane. It
introduces a hierarchical architecture composed of two main components: the FlexRAN Ser-
vice and Control Plane and the FlexRAN Application Plane. The Service and Control Plane

features a Real-Time Controller that communicates with underlying RAN runtimes, which

2.4.3 Kubernetes Ecosystem 55

serve as abstraction layers for different RAN modules, such as monolithic 4G eNodeBs or
disaggregated 4G and 5G deployments. FlexRAN ensures efficient communication between
the RTC and the RAN agent within the runtime environment, enabling a wide range of RAN
control actions. These actions, enable functionalities like real-time monitoring, traffic steer-
ing, mobility management, and dynamic RAN slicing. FlexRAN also integrates seamlessly
with OAI, enhancing its utility for end-to-end 5G experimentation. Its programmability en-
ables researchers to implement and test custom algorithms for a variety of use cases, including

traffic steering and resource slicing.

FlexRIC

FlexRIC [40] is a next-generation RIC platform designed for Open RAN (O-RAN) ar-
chitectures. It provides both Near-RT and Non-RT control functionalities, enabling dynamic
optimization of RAN operations. FlexRIC supports the deployment of customized applica-
tions (xApps and rApps) for tasks such as traffic prediction, resource allocation, and anomaly
detection through customed or standardized SMs. Its adherence to O-RAN Alliance specifi-
cations ensures interoperability with diverse network components. Furthermore, FlexRIC’s
modular design and support for E2 interfaces make it an ideal tool for evaluating O-RAN-
based solutions in 5G networks. FlexRIC supports multi-vendor integration, including OAI
and srsRAN, allowing it to function in diverse network environments. It extends the capabili-
ties of the O-RAN E2 interface through the introduction of the E42 interface, which includes
additional procedures such as E42 Setup Request, E42 Setup Response, E42 Subscription
Request, E42 Subscription Delete Request, and E42 RIC Control Request. The Fig.
illustrates the architecture of the FlexRIC controller system and its interaction within the
O-RAN ecosystem. The controller comprises components like xApps, a database, communi-

cation libraries, intelligent applications (1Apps), and a server library.

2.4.3 Kubernetes Ecosystem

In recent years, microservices—driven by containerization—have become a preferred
approach for creating highly scalable and portable applications. In telecommunications and

computer networks, Network Function Virtualization (NFV) integrates seamlessly with vir-

56 Chapter 2. Background

B Yadalalslaps iy .

2]) :
HEXH R 5&
> 3 & [Comm/NB < &
L =5 iApps s
k> S . & =
S Server Library
= 1
§ E2-compatible i E2 Protocol
8] Protocol 5 I (ASN.1)
o - !
= 1
= Agent library Agent library

OAIl 4G Wrpr OAIL 5G Wrpr

Figure 2.24: FlexRIC Architecture.

tual machines, enabling efficient representation of network functions. The Kubernetes frame-
work, with its robust API, orchestrates both containers and virtual machines through the
KubeVirt add-on, which encapsulates existing virtual machines within containers. This or-
chestration reduces operational costs and complexity for cloud-native network functions, po-
sitioning Kubernetes as both a Virtual Infrastructure Manager (VIM) and a Virtual Network
Function Manager (VNFM). Leveraging NFV, beyond 5G networks can be fully software-
defined, enabling virtualization of all functional components. Consequently, deploying 5G/6G
on Kubernetes streamlines resource management, monitoring, scalability, and installation.
Therefore, we examine the Kubernetes ecosystem, along with integrated technologies, in

support of the objectives of the dissertation.

Introduction to Docker

Docker [A41] is a leading containerization platform that facilitates the creation and man-
agement of isolated application environments known as containers. Containers encapsulate
an application’s code along with all its dependencies, ensuring consistency and portability
across diverse environments, including data centers, cloud platforms, and personal comput-

ers. Docker primarily consists of two fundamental components:

* Docker Containers: These are lightweight, standalone units that package the applica-
tion code and its necessary dependencies. Containers operate in isolation from the host
environment, containing only the essential operating system components, libraries,

and services required for the application to function. This isolation allows multiple

2.4.3 Kubernetes Ecosystem 57

containers to run concurrently on the same machine without interference. To execute
containers, Docker relies on the Docker Engine, a runtime that operates atop the host
operating system, enabling containerized applications to run seamlessly across various

infrastructures.

* Docker Images: A Docker image is a read-only template that includes all the elements
needed to run an application within a container, such as libraries, configuration files,
and system tools. These images serve as the blueprint for containers, with each image

instantiated into a container by the Docker Engine.

Docker employs a client-server architecture to manage container operations and it can
be observed in Fig. 2.23. The core server component, known as the Docker Daemon, is re-
sponsible for building, running, and distributing Docker containers. Communication between
the Docker Daemon and the Docker Client is facilitated through a RESTful API over UNIX
sockets. For the storage and distribution of Docker images, Docker utilizes registries—central
repositories where images are stored and retrieved. The Docker Daemon interacts with these

Docker Registries to fetch and store images as needed.

R Client Seeslls DOCKER_HOST W Registry &

[docker build dwbuweyl docker daemon @

- -.'- -,
docker pull B E 1

f (s e
d -

- L

L 4 l'J'[Jl'.‘I'I-StE.‘:l‘I

NGIIX

~

docker run

- build

....... pull

run

Figure 2.25: Docker Architecture.

Introduction to Kubernetes

Kubernetes [42] (K8s) is an open-source platform designed to automate the deployment,

scaling, and management of containerized applications. As a leading container orchestrator,

58 Chapter 2. Background

Kubernetes significantly enhances distributed systems by offering robust functionalities that
improve efficiency and reliability.

One of Kubernetes’ primary features is load balancing. It exposes applications through
Services, assigning DNS names or IP addresses to ensure even distribution of network traf-
fic across containers. Additionally, Kubernetes supports storage management by allowing the
mounting of volumes from various storage solutions, including local storage, cloud providers,
and Network File System (NFS). A core strength of Kubernetes lies in its ability to maintain
the desired state of deployments. Administrators define the desired state using YAML or
JSON configuration files, specifying parameters such as the number of running containers
and resource limits for CPU and RAM. Kubernetes continuously monitors the actual state
of the cluster and takes necessary actions to align it with the desired state, ensuring consis-
tency. Health monitoring is integral to maintaining system stability. Kubernetes continuously
checks the health status of containers, automatically restarting or replacing those that become
unhealthy. Furthermore, Kubernetes streamlines configuration and secret management, en-
abling users to handle application settings and sensitive information, such as passwords and

SSH keys, without rebuilding container images.

Kubernetes Cluster
Control Plane (Master Node) @ Data Plane (Worker Nodes)

Cloud Controller. 11l
ETCD S ! Worker Node 1

Container Runtime

1
0080 (.

= ‘Optional Kubernetes Objects kube-proxy .

. kubectl
- CLI/API
Dashboard

API .
Developer = _,Q_, @ @ @ End Users
kubelet Container Runtime
e0000 (O

Optional Kubernetes Objects kube-proxy

Server «——

Worker Node 2

Scheduler Kube Controller
Manager

Figure 2.26: Kubernetes Architecture

Kubernetes clusters as illustrated in Fig. 2.26, are composed of nodes that host container-
ized applications within pods, the smallest deployable units in the system. Each node runs
essential components, including the Kubelet, which ensures containers within pods are run-

ning and healthy, the Kube-proxy, which manages network rules to facilitate communication

2.4.3 Kubernetes Ecosystem 59

between pods internally and externally, and the Container Runtime, which executes contain-
ers using technologies such as Docker, containerd, or CRI-O.

The Control Plane oversees the cluster’s desired state, ensuring it aligns with the actual
state. Typically hosted on dedicated control plane nodes, it comprises several key compo-

nents:

 kube-apiserver: Serves the Kubernetes API, acting as the primary interface for cluster

interactions through tools like kubect! or the Kubernetes Dashboard.

* eted: A reliable, distributed key-value store that maintains cluster data, ensuring con-

sistency and availability.

* kube-controller-manager: Runs controllers that regulate the cluster’s state, ensuring

desired configurations are met.

* kube-scheduler: Assigns pods to nodes based on resource availability and policy con-

straints.

* cloud-controller-manager: Integrates the cluster with cloud provider services, man-

aging cloud-specific controllers.

Kubernetes objects define the desired state for both applications and infrastructure, de-

scribed using YAML or JSON. These objects include:

* Pod: The smallest deployable unit, typically containing one container with a unique IP

address within the cluster.

* ReplicaSet: Ensures a specified number of pod replicas are running, facilitating scaling

operations.

* Deployment: Manages ReplicaSets, enabling seamless rolling updates and rollbacks

for application versions.

* Service: Provides stable endpoints for sets of pods, ensuring reliable network commu-

nication despite pod IP changes.

» StatefulSet: Manages stateful applications by maintaining consistent identities and

storage for each pod.

60 Chapter 2. Background

* PersistentVolume (PV) and PersistentVolumeClaim (PVC): Both manage storage
resources, with PVs representing storage and PVCs acting as requests for specific stor-

age requirements.

Finally, networking is fundamental to Kubernetes, enabling seamless communication
within the cluster through various mechanisms. Containers within the same pod commu-
nicate via a shared network bridge without requiring Network Address Translation (NAT),
facilitating efficient intra-pod communication. Kubernetes utilizes the node’s root network
and Linux bridge to route packets efficiently for communication between pods on the same
node. When pods reside on different nodes, routing tables direct traffic between node-specific

network bridges, ensuring reliable data transfer across the cluster.

KubeVirt

By default, Kubernetes does not provide native support for managing virtualized tech-
nologies such as VMs. This limitation is addressed by KubeVirt [43], an extension for Ku-
bernetes that enables the management of libvirt-based virtual machines within the Kuber-
netes ecosystem. Rather than segregating containers and VMs, KubeVirt integrates VMs as
container workloads, allowing them to be managed alongside traditional containerized ap-
plications. The hybrid availability of both containers and VMs is particularly advantageous
for edge solutions in modern cellular networks, where the lifecycle, scaling, and migration
of edge services can be efficiently managed using KubeVirt’s unified API. For instance, de-
ploying a MEC host, including the MEC agent and MEC application, can be done on a VM
managed by KubeVirt’s API.

The architecture of KubeVirt as illustrated in Fig. comprises several key compo-
nents. The virt-api-server serves as the interface exposing KubeVirt’s API, handling updates
related to virtualization through custom resource definitions (CRDs) and managing the vali-
dation and defaulting of VM configurations. The virt-controller oversees the pods associated
with VMs, monitoring their status. Similar to Kubernetes’ kubelet, the virt-handler runs on
each worker node, continuously monitoring the state of VMs to maintain the desired state.
The virt-launcher is responsible for managing the namespaces that host VMs, initiating VM
instances by passing their CRD objects based on signals from the virt-handler. Within each
VM pod, libvirtd operates to manage the lifecycle of the VM process, utilizing containerized

libvirtd and QEMU technologies to deploy and run VMs effectively. Moreover, KubeVirt

2.4.3 Kubernetes Ecosystem 61

allows the management of VMs similarly to containers, including the ability to perform live
migrations through standard kubect1l commands. Live migration is initiated by submitting
aVirtualMachineInstanceMigration object to the cluster, specifying the VM to
be migrated. Additionally, migration parameters such as reserved bandwidth can be config-
ured via Kubernetes ConfigMaps. KubeVirt employs pre-copy techniques by-default for VM

live migrations, which help minimize downtime during the migration process.

kubectl (user commands)

Node

(o]

/ docker (runtime)
/ Pod (DaemonSet) Pod (per VMI) Pod
APl Server
I —

T vithanter | [virttauncn
|] virt-handler | | virt-launcher container
/ e
virt-controller virt-api |</
libvirtd

Cluster components

KubeVirt component

Figure 2.27: KubeVirt Architecture.

Kubeflow

Kubeflow [44] is an open-source platform engineered to simplify the deployment, orches-
tration, and management of ML workflows on Kubernetes. It emerged from the necessity to
address the complexities involved in deploying scalable ML models. By abstracting the un-
derlying infrastructure, Kubeflow allows users to concentrate on developing and deploying
ML models without being bogged down by system management intricacies.

The primary objective of Kubeflow is to support the entire machine learning lifecycle,
including data preparation, model training, hyperparameter tuning, deployment, and moni-
toring. It integrates various ML frameworks and tools into a unified platform, ensuring seam-
less interoperability and scalability. At the core of Kubeflow’s architecture is the Kubernetes
cluster. Kubernetes ensures that ML workloads run efficiently and reliably. Building on this
foundation, Kubeflow introduces specialized components like Kubeflow Pipelines, which

facilitate the design, deployment, and management of end-to-end ML workflows. These

62 Chapter 2. Background

pipelines offer a graphical interface for creating complex workflows that include data pro-
cessing, model training, evaluation, and deployment stages, defined using a domain-specific
language (DSL) that promotes reproducibility and version control.

Model serving and deployment are streamlined through Kubeflow’s KFServing compo-
nent, which offers a standardized interface for deploying and managing ML models in pro-
duction environments. KFServing supports features such as autoscaling, canary deployments,
and A/B testing, ensuring that models are served with high availability and minimal latency
to meet real-time inference requirements. Additionally, Katib, Kubeflow’s hyperparameter
tuning tool, automates the search for optimal hyperparameters using various algorithms, en-
hancing model performance through iterative experimentation and refinement. A high-level

overview of the ML lifecycle within Kubeflow ecosystem is depicted in Fig. .28.

Feast
Data — 5 Offine Feature Online «——— Data
Producers i Feature Store Store Feature Store Producers
‘ i Model Registry

Feature ML Model Feature
Generation Metadata Artifacts Extraction

Kubeflow I
" 'Spark Operator * " Notebooks 7 Katib “Kubeflow Trainer 7 Kserve
] Hyperparameter ;
i : L : Model Training 1
) | Data Preparation : e : Def:,‘;zf,',en, | | (mm | Model Serving < ——————
:] Model ' Model :
ML Engineer : Optimization Fine-Tuning

Figure 2.28: KubeFlow ML lifecycle.

Chapter 3

Mobility Aware Edge Service Migration
for 6G Networks

3.1 Introduction

The evolution of the telecommunications infrastructure to the 5 generation has enabled
key functionalities, allowing the flexible management, deployment, and subsequent chaining
of network components as software network functions. Such approaches have been enabled
through the wide application of softwarization for the different network functions, applied
even for the Radio Access Network (RAN), and the disaggregation of previous monolithic
components (e.g. the cellular core network and the RAN base stations) to separate functions.
In this manner, the network can be dynamically and even autonomously adjusted [45] in an
end-to-end manner, based on the actual load that it is experiencing, allowing the transition to
self-managed and organized 6G networks.

Cloud-native approaches for network functions in the 5G context have been embraced
by the community, as they allow flexible management, reconfiguration and monitoring of
the network in an end-to-end manner. As low latency access is needed in the 5G and beyond
networks for serving ultra Reliable Low Latency Communications, Multi-Access Edge Com-
puting (MEC) needs to be integrated in the overall architecture. As the user moves among
different RANSs, the latency of accessing the service needs to be preserved for providing users
with a seamless experience. To accomplish such behavior, migrations of the hosted services
are needed, though not fully compatible with the cloud-native approach, and placing them

closer to the network access point of the user.

63

64 Chapter 3. Mobility Aware Edge Service Migration for 6G Networks

In this chapter, we experiment with a cloud-native end-to-end network, enhanced with
Follow-me MEC functionalities. Heterogeneous access is provided at the RAN level, using
disaggregated base stations, and MEC is integrated on the fronthaul of the network, ensuring
low-latency access to services. The entire network is instantiated in a cloud-native manner,
using a widely adopted container orchestration solution. Thus, the approach is a fully cloud-
native Follow-me MEC system, that self-organizes and migrates the network to the edge
server that ensures the minimum possible latency for accessing the service. The network
is extended with multiple technologies for the RAN, allowing end-users to reach services
located at the far-edge of the network. Our results show that the scheme is able to provide
low latency access to the hosted services, while the UE remains agnostic of the entire process

and without any drops of the already established connections.

3.2 Related Work

The containerization of RAN functions has gained a lot of attention lately, towards pro-
viding the RAN as a Service (RANaaS) in cloud-deployments [46]. Such efforts are empow-
ered by the wide softwarization of the base station stack [38], supported by the disaggrega-
tion of the stack to achieve real-time signal processing in a cloudified environment. Towards
providing the network under the RANaaS paradigm, the deployed network functions need
to be appropriately managed, chained, and monitored. To this end, authors in [47] provide
their approach in managing the softwarized disaggregated stack of a base station in RedHat
OpenShift. Authors in [48] consider the problem of slicing in such softwarized cloud-native
networks and provide a cloud-native approach for network slicing. The proposed approach
advances the architectural vision of the mobile network from a network of entities to a net-
work of capabilities, upon which slicing is employed.

Although cloud-native approaches can assist in the overall flexibility for managing the
deployed networks, 5G and beyond network advances are enabled through the integration
of novel features in the networking stack. For example, for supporting ultra-Reliable Low-
Latency Communications (URLLC), the wide deployment of edge infrastructure is needed.
To this end, authors in [49], [50] and [51] pinpoint the important role that MEC can play in
reducing the latency time to access services over the network and all the available placements

for the services with respect to the different cellular network components. In these works, the

3.3 System Architecture 65

placements are considered at the best case just after the base station component, or after the
core network, and placing the core network close to the edge. In previous works [52] and [53],
we introduce a novel placement of the MEC services on the fronthaul of the network when
considering disaggregated base station setups. Such configuration can impact the latency
times for accessing the services, by removing the processing costs of the higher layers of
the base station stack, and transmissions of data to the core network. Moreover, the access
network is augmented with heterogeneous links, and can therefore support different network
access schemes, with varying access times to the services placed on the fronthaul.

Although MEC can drastically reduce latency for certain types of services that are de-
ployed along the network edge, it does not in principle consider the mobility of the end-users.
To cope with this problem, and keep the latency times low, the Follow-me MEC approach
has been proposed. In [54], authors apply such approach in a vehicular environment. They
introduce their algorithm for migrating the services to other hosts, and consider an SDN-
based control plane for managing the network substrate. In [55], a distributed storage is used
for synchronizing states between different MEC servers, ensuring service continuity when
switching to another server. Authors in [56], formulate the problem of determining the new
hosts for migrating the services in such an environment and propose a distributed approxi-
mation scheme with reduced time complexity.

In this chapter, we progress beyond existing works by building an entirely cloud-native
end-to-end network, with Multi-access Edge Computing functionalities. The network is fur-
ther extended to support migration of the services, subject to the quality that is measured from
the operator side. The end-to-end network, MEC and migration capabilities, and monitoring
framework are managed through the same orchestrator solution. In the following section, we
present our low-level system setup, and how we enable live migration of the containerized

MEC services.

3.3 System Architecture

Towards deploying the entire network in a cloud-native manner, we employ the Kuber-
netes framework. Our implementation comprises a heterogeneous 5G disaggregated network

with novel MEC functionalities, allowing services to be placed directly over the fronthaul of

66 Chapter 3. Mobility Aware Edge Service Migration for 6G Networks

MME cu

sea @ S1-MME @‘ F1

_.1

A
e SPGW.U qrTTm e > v
@" @ ' 3GPPDU
3 s1-U ' F1 AE

SPGW-C

CASSANDRA DB HSS

rd & J
NG

Internet MEC-HOST non-3GPP DU

UE

@ KUBERNETES POD BACKHAUL ~--mmemmmeees MEC LINKS WiFi LINK

% KUBEVIRT VM — FRONTHAUL LTE LINK STATEFULSET

Figure 3.1: The deployment of Heterogeneous MEC-functional 5G Network on Kubernetes.

the network, being completely managed and deployed through the Kubernetes framework.
Figure illustrates the end-to-end system architecture that enables the cloud-native RAN
and MEC setup. Below we list the main components of the solution, that enable the migration

of the MEC services to new hosts, in a seamless manner.

3.3.1 Management and deployment of the network functions

The Kubernetes framework is employed for managing and deploying the end-to-end net-
work and MEC services, as well as for their real-time monitoring. The control-plane node
(master) is running as a Virtual Machine (VM), managing different worker nodes that host
the actual network services. The architecture components end up being Kubernetes pods,
which host containerized instances based on an implementation of OpenAirInterface plat-
form [38] that has been developed in our prior research works [57] [52]. All these instances
together comprise an end-to-end containerized and disaggregated heterogeneous 5G network,
as detailed further in the subsections below. On top of this architecture, we integrated the
functionality of MEC, deployed as virtual machines, and managed by the overall system as
container workloads, with the assistance of the KubeVirt plugin [43] which it’s architecture
analyzed in chapter .4.3. The choice of hosting the MEC services as VMs rather than con-
tainers gives us the advantage of providing live migration of the services, even stateful ones,
without any drops of already established connections. In this way, we can manage VMs as
we could manage containers and take advantage of VMs Live Migration by executing control

plane commands.

3.3.2 RAN Functions and MEC 67

Regarding the selection of Kubernetes Network, we deployed the Flannel CNI (Container
Network Interface) plugin to the cluster. In addition, we used Multus CNI to have more than
one default pod IP, extending the interfaces of the pods for multiple connectivity between
the 5G network components. To accomplish a stateful Live Migration of the VMs, network
bridge interfaces are used on the worker nodes. On these bridge interfaces, the VMs attached

their own static IPs, providing Layer 2 connectivity between them.

3.3.2 RAN Functions and MEC

Regarding the actual implementation of the disaggregated network, we employ the im-
plementation with the functional split taking place in the higher OSI stack layer 2, between
Packet Data Convergence Protocol (PDCP) and Radio Link Control (RLC) layers of the base
station. The upper layers play the role of the Central Unit (CU) and the lower layers the Dis-
tributed Unit (DU), which performs the actual transmissions over the air. Multiple DUs can
belong to a single CU and communication between them is based on F1 Application Protocol
(F1AP) via the F1 interface. This allows us to have different transmission paths, to serve a UE
at the same time. The implementation running inside the pods also supports the integration
of non-3GPP DUs (e.g. a WiFi1 DU, as described in detail in [57)]), by properly handling of
the transmitted data to/from the CU. Since DUs need to have an appropriate RF frontend to
perform the transmissions over the air, we employ volumeMounts for the 3GPP DU, allowing
the USB device to be handled by the container hosting the service. Regarding the non-3GPP
DUs (WiFI), we run the pod with the /ost network enabled. This allows the container to have
direct access to all the network interfaces of the hosting worker, and have direct access to the
WiFi chipset that is used to run the WiFi network. The WiFi configuration utilizes 802.11n

channels.

3.3.3 Follow-me MEC extensions

In this section, we provide the details for the operation of the MEC over the fronthaul
functionality, and how it has been extended to support the Follow-me MEC functionality.

In order to incorporate services over the fronthaul, we need the appropriate interfaces
between the DUs and the MEC platform hosting services/applications. In [52], we developed
a protocol for DU to MEC communication and introduced a MEC Agent component. The

agent generates and exchanges the appropriate messages with the DUs, and receives and

68 Chapter 3. Mobility Aware Edge Service Migration for 6G Networks

delivers the respective payload destined for services hosted at the MEC site. The solution is
similar to the bump-in-the-wire method by ETSI [51], but traffic interception is taking place
on the fronthaul (between the CU and DUs) rather than the backhaul network. The MEC
service can also select the technology through which each UE is served in a per-packet basis,
enabling the dynamic selection of the links per UE from the MEC’s perspective.

Our Follow-me implementation scheme relies on the management of an autonomous sin-
gle MEC site with the help of the Kubernetes framework. The MEC site is a VM instance
delivered as container workload defined by the KubeVirt API, integrating the functionalities
of the MEC Agent and the hosted service. The placement of the MEC site is located on the
fronthaul enabling the lowest latency between the end-user and the services. The architec-
ture components of MEC site can be seen in Figure B.2. MEC Agent manages the packets
going to/from the MEC services, by communicating directly with the DUs, allowing the pro-
visioning of services directly from the fronthaul of the cellular network. The agent holds a
book-keeping process for mapping each RNTI value of each UE. Based on this RNTI infor-

mation, the appropriate requests are made between DU-MEC and vice versa.

DUs
x

To/From DUs

MEC HOST VM
v

MEC Agent MEC Controller

My W2

docker

MEC Service

& KubeVirt £F muLTus

&

K8s

Worker Node ‘

Figure 3.2: MEC Host Architecture.

The live migration of services is triggered by the MEC controller. MEC controller oper-

ates internally on the VM and can execute migrate commands as it has remote access to the

3.3.3 Follow-me MEC extensions 69

Kubernetes cluster API and monitoring tools, and supports RAT (Radio Access Technology)
switch functions by sending a signal to MEC Agent to change the transmission path of the
MEC service through 3GPP and non-3GPP technologies as is illustrated in Fig. B.3.

The MEC service is a docker application that is attached by two macvlan interfaces M1
and M2. The M1 interface connects the MEC service with the MEC agent and through this
interface passes all the traffic between the service and the end-user. On the other hand, the
M2 interface connects the MEC service with the MEC controller. Through this interface, all
the traffic related to the monitoring of the quality of the connection between the service and
the end-user is transmitted. More specifically, the connection between the MEC controller

and the MEC application is based on server-client communication.

Internet

((g) . ()

> MEC HOST -
ite @

3

User Mobility

Figure 3.3: MEC traffic passed on dual technology DU’s.

The MEC service runs the server-side of the communication, as described in the algorithm
ll. In essence, it gathers information about the quality of the link it has with the end-user. This
information is mainly related to the Round Trip Time (RTT), which is averaged from the
last 10 measurements, using a sliding window approach. Along with the RTT average, the
number of packets and the packet loss rate are measured and all of these statistics are stored

in a dictionary. This dictionary is then sent to the client which runs on the MEC controller

70 Chapter 3. Mobility Aware Edge Service Migration for 6G Networks

and whose operation is described in the algorithm P. The MEC controller after receiving
the dictionary constantly monitors if the RTT average exceeds the RTT threshold which is
defined depending on the type of application. In case the RTT average exceeds the threshold,
then the controller makes a RAT switch by switching the transmission path from LTE DU to
WiFi DU demonstrated by Fig. B.4. If the delay is still high then the controller live migrates
the MEC Host to a targeted worker that is closer to the UE as it is observed in Fig. B.3. After
waiting for the average migration time to pass, which is updated at the end of each migration
after being parsed by the log files, it switches back to the LTE DU. In the meantime, the user
exchanges MEC data via WiFi DU, experiencing a seamless migration experience.

Using the aforementioned approach, the costs of migrations are kept low, as service mi-
gration incurs additional operation costs such as usage of the expensive wide-area-network
(WAN) bandwidth and system energy consumption [58]. At the same time, we also take ad-
vantage of the benefits of a heterogeneous 5G network utilizing all the transmission paths

that are available with the sole purpose of reducing UE service access latency.

Internet

CORE

MECE
((gj) .

—_— ——
S MEC HOST @
Lte

—_
-
=

P

User Mobility

Figure 3.4: Radio Access Technology switch.

3.4 Evaluation 71

Imtermet Imtermet
CORE CORE
cu cu

E MEGRATION OF MEC SERVICE
MEC WERCE MEC 3ERNCE

() ' @ () (@)
F @ A B

MEC HOST [] “?; MEC HOST []

=

waer Wobely

Figure 3.5: Live Migration of MEC service.

Algorithm 1: Follow-Me procedure [Server]

Function follow me server (mec_ip, port, ue_ip, num_packets) :
client_socket = init_server socket(mec_ip, mec_port);
while T'rue do
ping results = get ping results(ue_ip, num_packets);
ping_statistics = ping_results.parse().as_dict();
msg = ping_statistics.serialize();

client_socket.send(msg)

end
End Function

3.4 Evaluation

For the deployment of the heterogeneous containerized 5G network with MEC function-
alities, we used the NITOS testbed [37]. NITOS is a heterogeneous testbed located in the
premises of University of Thessaly, Greece. The availability of wireless devices (WiFi, Soft-
ware Defined Radios, UE terminals) suits our experimentation needs for evaluating our so-

[ution.

For the experimental evaluation of the cloud-native Follow-me MEC approach, we used
four NITOS nodes as Kubernetes workers, while the control-plane node was running on a

separate VM on the NITOS cloud. One of the worker nodes was used to deploy the disaggre-

72 Chapter 3. Mobility Aware Edge Service Migration for 6G Networks

Algorithm 2: Follow-Me procedure [Client]

Function follow me client (mec_ip,port):
client_socket = server connect(mec_ip, mec_port);

avg_mig _time = init avg mig time();
rat_switch = False;

while True do
msg = client_socket.recv();

ping_statistics = msg.deserialize();
if ping statistics.rtt_avg > rtt_threshold then

if rat_switch == False then
switch to wifi du();

rat_switch = True;

else
mec_host = closest _worker();

kubectl.1ive migrate(mec_host);
sleep(avg mig_time);
avg_mig_time = get avg mig time();

switch to lte du();

rat_switch = False;

end

end

end
End Function

gated Core Network and the Central Unit of our communication scheme. The Core Network
is running a disaggregated instance of the OpenAirInterface Core Network, featuring Con-
trol/User Plane Separation (CUPS) functionality. This breaks down to hosting five different
containers for the Core Network as follows: 1) a Cassandra based database, 2) a Home Sub-
scriber Service (HSS), 3) a Mobility Management Entity (MME), and 4) a control plane
Service/PDN Gateway (SPGW-C) and the respective user plane service (SPGW-U). The CU
component hosted at the same worker node is integrating the PDCP and above layers, as well
as the interface towards the Core Network. On the second worker node, the fronthaul com-
ponents were deployed, including the 3GPP and non-3GPP DUs, as well as the MEC site.
The MEC site is a VM managed through Kubernetes with the KubeVirt add-on, hosting the
MEC Agent that facilitates the interaction with the DUs, the MEC Controller that selects the
appropriate DU from the MEC side, and the actual MEC service that is provided to the UEs

of the network. The third node is used for performing the live migration of the MEC site

3.4 Evaluation

73

Migration Time

80

70

60

50

40

30

20 |

10+ 1

: B
s1 s2 s3 S4

Scenarios

Time (s)

Figure 3.6: Migration Time for each sce-

nario.

180

160

140

120

100
80

60

WIFI LTE ——
Latency on VolP
180 .
160 A
140 \ |
i il
g 0 L,
>
g 5 WA
5 e oY
. Vo Np
NIV /A e A 0
20 PSS e
oI ——— | ‘ ‘
0 10 20 30 40
Time (s)

Figure 3.7: Latency on Fronthaul (VoIP ap-

plication); red line denotes when the migra-

tion takes place.

Figure 3.8: Experimental evaluation of the Follow-me MEC system for different scenarios.

during the experiment process. A separate node is used as a multi-homed UE for connecting

concurrently to the 3GPP and the non-3GPP DUs.

Table 3.1: Benchmark Characteristics (in ms)

LTE to WiFi to
MEC-APP MEC-APP

LTE WiFi
to EPC to EPC

LTE

WiFi

to EPC to EPC

(20ms) (20ms)
Avg. RTT 25.6 5.28 27.9 5.88 46.03 26.08
Min. RTT 18.76 3.09 22.04 3.21 45.4 25.2
Max. RTT 32.3 12.8 40.8 13.4 54.07 34.9

For the evaluation part of our MEC deployment, we focus on measuring the overall la-

tency for accessing the MEC services. The measurements are based on the latency between

the multihomed UE (connected to LTE and WiFi DU) and the MEC service which is deployed

either to the fronthaul or to the core network. We noticed that the latency measurements of

MEC services deployed on the fronthaul are slightly better than the MEC services deployed

on the core network, as illustrated in Table 3.1, considering that latency is about the half of the

measured RTT. This is because the core network container instances run on a testbed Node

which is relatively close to a testbed Node that the fronthaul container instances run. In real-

world scenarios, the core network is usually located several kilometers away from the RAN

74 Chapter 3. Mobility Aware Edge Service Migration for 6G Networks

components, thus inducing extra delays. To emulate real-world scenarios, we tuned the delay
on the link between the CU and the Core Network by injecting 20ms delay for all the traffic,
by using the Linux tc-netem package. In addition, we can conclude that WiFi outperforms
LTE for the cases of latency as shown in figure B.7. The latency measurements results were
conducted during the exchange of VoIP packets between the end-user and the MEC service
through the SIPp application [59], that uses Session Initiation Protocol (SIP) to transfer VoIP
packets.

To test the functionality of our follow-me implementation, we used 2 different MEC ser-
vices. One was a real-time message exchange application, based on a TCP/IP socket for the
communication of different clients, and the second one was using an application that gener-
ates Session Initiation Protocol (SIP) traffic for transfer VoIP packets. As our solution realizes
a Follow-me MEC service, we target in evaluating the migration time needed for transferring
the MEC service to a new host. Therefore, to measure the migration time, we created and

evaluated the following scenarios:

S1: VM includes MEC Agent and MEC Controller (Does not include MEC service)

S2: The VM includes MEC Agent, MEC Controller and SIPp as MEC service.

S3: The VM includes MEC Agent, MEC Controller and real-time messaging as MEC

service.

S4: A Fedora VM without hosting any services, instantiated through our framework,

used as a reference for our measurements

Figure B.6 shows our experimental results with respect to the migration time of live mi-
gration of the VM for each of these scenarios. In all cases, the migration throughput was
measured as 64 MiB/s. It is worth noting that to replicate a large number of VM workloads,
we used containerDisk ephemeral storage and not shared storage. This means that during
migration, along with the memory pages, disk blocks are copied from the source to the des-
tination VM, contributing to the increase of migration time. For all the cases, the connection
from the UE to the services hosted in the MEC platform remains uninterrupted, and only is
down for a few milliseconds, when copying the dirty pages from the RAM storage of the ini-
tial VM to the target migrated VM. This can be observed in Figure B.7, where we measure the

latency between the UE and the VoIP server that is migrated to a new host, over both access

3.5 Conclusion 75

technologies. The latency is uninterrupted, providing an entirely seamless experience to the
UE, though some spikes in the overall latency are observed during the migration process. It
is worth noting that such spikes are observed only for stateful transport protocols, as it takes
some time for the transport layer to adapt to the new location of the service. For stateless

transport, such latency times are significantly lower and almost negligible.

3.5 Conclusion

In this chapter, we presented our approach in developing a fully cloud-native Follow-
me MEC scheme using open source platforms. We used a disaggregated heterogeneous base
station, with novel placement of the MEC services on the fronthaul, which proven to be very
beneficial for latency times. All the components were containerized and managed through the
Kubernetes framework. For performing live migrations of the service, we integrated it as a
Virtual Machine to the Kubernetes framework, using the KubeVirt add-on. Our results denote
that the system is able to perform live migrations, as the latency of the link is deteriorating,
and switch technologies on the fly, allowing a multihomed UE to experience seamless low-
latency access to the MEC service.

While these results showcase effective reactivity, proactive approaches leveraging pre-
dictive mechanisms could further enhance system responsiveness and performance. In the
following chapter f, we build upon these findings by incorporating proactive migration strate-
gies using Deep Reinforcement Learning (DRL), which anticipates service relocation needs
based on user mobility and edge-server workload, ensuring even more robust and adaptive

MEC service continuity.

Chapter 4

Deep Reinforcement Learning based

Service Migration for 6G Networks

4.1 Introduction

The 5G architecture inherently facilitates MEC deployments, especially when the UPF
is placed at the network edge. Combining edge-deployed services with close proximity to
the UPF minimizes latency by reducing the need to route traffic over long distances to cen-
tralized data centers, typically hosting the 5G Core Network (SGCN). Consequently, MEC
deployments must inherently accommodate user mobility, seamlessly migrating services to
maintain low latency access throughout client movements. Network Functions Virtualization
(NFV) further supports this mobility by decoupling network services and functions from un-
derlying hardware. This decoupling allows both core network functions (e.g., UPF) and user
services (e.g., VoIP, Video on Demand) to be flexibly hosted as microservices, facilitating
migration across edge nodes to follow user mobility dynamically.

Incorporating AI/ML methodologies further enhances service migration capabilities. Pre-
dictive algorithms proactively manage service placement and load distribution, ensuring op-
timal utilization of resources while consistently maintaining user experience standards.

Building upon the cloud-native Follow-me MEC approach presented in Chapter [, this
chapter extends the architecture by integrating proactive migration strategies based on Deep
Reinforcement Learning (DRL) techniques. While the previous approach successfully pre-
served low-latency access to MEC services through reactive migrations, proactive mecha-

nisms that anticipate user mobility patterns and edge-server workloads can significantly en-

77

78 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

hance the QoS and ensure seamless user experiences.

To achieve this, we introduce a comprehensive DRL-based framework leveraging our
cloud-native infrastructure built upon Kubernetes and KubeVirt. The framework utilizes multi-
cell RTT measurements, provided by the LMF, and real-time workload monitoring to make
informed and predictive migration decisions. Furthermore, our enhanced framework supports
hybrid migrations, enabling seamless transitions of both containerized services and Virtual
Machines (VMs). We extend our evaluations to include migrations of critical 5G network
functions such as the User Plane Function (UPF), thereby assessing the performance impli-
cations and guaranteeing uninterrupted service continuity. Our contributions are summarized

as follows:

* To provide a seamless MEC experience to moving users of the network by exploiting

our developed edge infrastructure.

* To enable continuous and uninterrupted low-latency access to services deployed on the

network edge.

» To model the service migration environment as a Markov Decision Process (MDP)
problem, and to design a reward function that incorporates migration cost penalties to

guide the decision-making process.

* To implement DRL algorithms on top of our environments and to compare their per-

formance.

* To select the optimal target location for the edge services by taking advantage of the

user’s localization, utilizing a DRL agent.

 To evaluate and integrate the developed approach in areal 5G edge setup, using realistic

mobility patterns and real-world edge workload dataset.

The remainder of this chapter provides detailed insights into our DRL algorithms, hybrid
migration mechanisms, and comprehensive experimental evaluations under realistic mobility

and workload scenarios.

4.2 Related Work 79

4.2 Related Work

Through the definition of the SGCN in a disaggregated manner and executing it using the
Service Based Architecture [49], MEC can be truly realized in a low-cost manner, allowing
service providers to take advantage of the network edges for providing selected services with
low latency. Such applications are of particular interest to the IoT community, as for certain
use cases low latency access and edge selection can be beneficial for the services offered over
the top. In [60], authors discuss the role of MEC in 5G and IoT, and demonstrate how IoT ap-
plications can benefit from a MEC-enabled 5G network with a use case that utilizes MEC to
achieve edge intelligence in [oT scenarios. Authors in [61] exploit the Virtual Machine (VM)
technology in order to provide migration capabilities in such IoT edge scenarios, while at
the same time reducing the loading time of the VM-based application by mangling the trans-
ferred files from each edge host. In [62], the authors model the problem of MEC location
selection in an [oT environment as a multiattribute decision-making problem, based on SDN
and NFV. In this work, the authors are able to reduce the server response time and improve
the quality of the user service experience. Specifically to the 5G network model, authors
in [63] present a 5G network architecture together with its network management capabilities,
complementing MEC with the connectivity service. The authors address different classes of
use cases and applications and evaluate their approach in a testbed setup. Subject to client
mobility, modeling the best wireless channel association and service placement within the
network is not a trivial task [64], especially when trying to meet a minimum Service Level
Agreement (SLA) on latency with the end-user. In [65], authors argue on the applicability
of MEC to a vehicular environment where services are replicated across different hosts and
prove that their approach can prune the end-to-end communication latency. In [66], authors
try to develop MEC solutions coupled with user mobility, for the fast relocation of service
instances to guarantee the desired QoE. The authors use containers for hosting the services
and develop a framework where proactive service replication for stateless applications is ex-
ploited to drastically reduce the time of service migration. In [67] and [68], authors explore
the Checkpoint/Restore In Userspace (CRIU) technology to migrate containerized services
to different hosts subject to client mobility. Although CRIU provides the ability to migrate
stateful applications as well, it fails to address different types of protocols supported in the
telecommunications network environment, such as the SCTP protocol for the N1/N2 inter-

face between the Access and Mobility Management Function (AMF) and the gNB. In [69],

80 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

authors explore the methodologies for handovers and service migrations employing proba-
bilistic and prediction algorithms, using real-world datasets, and evaluating the implemented
models. Similarly, in [[70] the authors employ statistical and machine learning models to fore-
cast the edge evolution, in order to get the migration decisions. Although these approaches
are valid, classical machine learning and deep learning algorithms don’t cope with the dy-
namic nature of edge environments. Moreover, in order for these models to be effective huge
datasets are needed. In such dynamic environments, the use of reinforcement learning (RL)
may be necessary in order to effectively adapt to changing conditions and make real-time mi-
gration decisions. Additionally, RL-based approaches have the added benefit of being able
to consider the long-term consequences of migration decisions, rather than simply predicting
the next best action. In [71] the authors propose a DRL approach for service migration in
(MEC)-enabled vehicular networks in a simulation environment, observing communication
delay and migration costs and evaluating the learning ability of the agent. The work reduces
the end-to-end latency and migration costs. However, the solution is tested only in a simula-
tion and there is no system architecture or an explanation of the integration of their approach
in real-world infrastructures. On the contrary, in work [72], authors employ DRL for deter-
mining the bandwidth for service migrations in 5G Networks. They employ DQN and DDPG
algorithms in a continuous action space defined as the bandwidth for the corresponding mi-
grations. They evaluate their algorithm in real-edge infrastructure utilizing CRIU technology
to migrate the services. Although their solution targets 5G Networks, there is no integration

of their approach into a 5G network with the respective interfaces.

In this work, we progress beyond existing literature by using a cloud-native RAN and
Core Network, deployed by using a blend of micro-services and VMs, based on the OAI
platform. The selection of the different types of virtualization depends on the services (net-
work/edge services) as detailed further below, consisting of either Virtual Network Functions
(VNFs) or Containerized Network Functions (CNFs). We blend the approaches of the CRIU-
based microservices and VM-based service provisioning, towards reaping the benefits of both
worlds in the k8s environment. By taking advantage of the multi-cell RTT feature standard-
ized by the 3rd Generation Partnership Project (3GPP) and the workload cluster measure-
ments, we model our infrastructure as an MDP problem. We define the states and the actions
and we design a reward function that targets optimal decisions and incorporates migration

cost-aware penalties. On top, we implemented a service migration Deep Q-Network (DQN)

4.3 System Architecture 81

and Deep State-Action-Reward-State-Action (Deep SARSA) agents. To train the agents, we
developed a digital-twin simulation environment identical to our real-world setup. Finally,
we evaluate the agent’s performance in the real edge infrastructure. In the next section, we

detail our system architecture and key building blocks.

4.3 System Architecture

Our overall setup consists of a 5G Edge architecture, that is entirely based on the Ku-
bernetes (k8s) framework, enhanced with novel capabilities for service continuity of MEC
applications and maintenance of 5G Virtual Network Functions (VNFs). Fig. §. 1| summarizes
the end-to-end service-based 5G network that uses hybrid solutions offered by the coexis-
tence of VMs and containers. By default, there is no built-in mechanism in k8s to support the
migration of stateful pods between its cluster nodes. Our architecture covers this gap using
various technologies that benefit beyond 5G networks as they can contribute to the seamless
experience of users regardless of their mobility. Furthermore, we enhance our architecture
with a digital twin-driven DRL framework to forecast the edge conditions and to take optimal
migration decisions. Below, we analyze the components of our architecture and the diverse
technologies, that make up our setup. To evaluate our implementation, we utilized the NITOS

testbed [37], a remotely accessible facility located at the University of Thessaly, Greece.

|Kuhernetes Worker #1 IKuberneres Worker £2
D Migration Dedicated L2 Connectivity D
@ Kubevirt g muLtus ‘-‘v‘w @ Kubevirt g muLTus :‘rfm
containerd containerd
R N AIR
ad _—— Control-Plane Node - _@ =
ARSI S APP
° 2 é3d 9
. o4 & -7
NRF #1 AMF . _7| AwWF NRF #2
@ 6 N DRL-Migration Agent ’ o @
SMF #1 UPF#1 _ .-~ containerd -~} SMF#2 UPF #2
GNB-CU GNB-CU
GNBDU®ET . GNB-DU #2
rm o
. . ;
T T T T
t t t; ty
(D) KUBERNETES POD O kusevRTWM

Figure 4.1: The deployment of the live-migration capable 5G Edge Infrastructure on Kuber-

netes

82 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

4.3.1 Architecture of the Edge Infrastructure

Our cluster consists of three k8s workers and one control-plane node. The control-plane
node is responsible for monitoring the health of the other nodes as well as the proper operation
of the VNFs and services. The remaining nodes host — by default — pods, but also VMs due
to the KubeVirt framework that we deployed in our cluster. A pod is the minimal object
deployment for a microservice within the k8s environment; it consists of at least one/more
containerized services, that are intercommunicating with each other. KubeVirt [43] is an add-
on that extends k8s capabilities by delivering VMs as container workloads. The significant
addition of KubeVirt to the k8s ecosystem brings an ideal environment for edge solutions
as it covers the gap of live migration of services in the k8s by taking advantage of VM live
migration. Moreover, it enables us to manage the lifecycle of VMs in the same manner as for

the pods via control plane commands.

However, containers can be live migrated too, mainly through the CRIU tool [[73] which
can restore the checkpointed states of the container to the destination node with the help of
the runC container runtime. An important effort to integrate CRIU into k8s was accomplished
through the PodMigration-Operator [74,75], which can migrate a stateful pod across the k8s
nodes. Nevertheless, it fails to seamlessly maintain IP/TCP connections since the pod’s IP
changes on the target host, even if a k8s service assigned with a static IP, routes the traffic to
the pods.

We managed to maintain IP/TCP connections without interruptions, by attaching to the
pods a secondary interface with the help of the Multus Container Network Interface (CNI).
We created static, migration-dedicated MacVLAN interfaces that bind to a host-bridged inter-
face consisting of physical and VLAN interfaces. The pods attach this MacVLAN interface
through the ContainerNetworkDefinition with static IPs which are persistent during the live
migration. The VMs attach their own static IPs on the same bridged interfaces, providing
Layer 2 connectivity between them. With this approach, we were able to incorporate the al-

tered PodMigration-Operator into our architecture.

We apply diskless live migration to both of our virtualized technologies. This allows us to
transfer only the memory state of the containers/VMs, which results in fewer memory pages
being copied, thus lower migration times. This is achievable as all nodes share a Network File
System (NFS), where the NFS server is the control-plane node and the clients are the worker

nodes. This NFS system includes the dump files containing the state pods and the images of

4.3.2 Management & Deployment of Network Functions 83

the VMs respectively. To this end, the process of live migration in pods can be achieved with

the following steps:
1. CRIU snapshots the state of the container on the target pod.
2. The snapshot dump file is exported to the NFS server.

3. A new-cloned pod is created on the target node that restores the source’s pod state via

the dump file.
4. The target pod is running and the source pod can be removed.

On the other hand, the KubeVirt VMs are importing their disk images through Persis-
tentVolumeClaim (PVC) which is managed by Data Volumes from the Containerized-Data-
Importer (CDI) which is a persistent storage management add-on for k8s. In order to perform
diskless migrations, these PVCs are distributed to the NFS via the NFS subdir-external provi-
sioner, i.e., an automatic provisioner that supports dynamic provisioning to pods/VMs using
the already-existing NFS server. Subsequently, the disk image is always available to the target
nodes and only the memory is copied from source to destination.

It is worth mentioning that in both types of migration, the Pre-Copy technique is employed
since it has less downtime [[7€]. By comparing VMs and pods during the live migration, we
conclude that pod seems like an ideal solution to deploy the edge services, as it has the least

migration time. However, we choose to keep both technologies in our architecture because:

* VM live migrations are more stable and smoother (lower latency spikes) than the pod

ones.

* CRIU doesn’t support SCTP socket maintenance during live migrations, unlike Kube-
Virt VMs. This leads to the failure of live migration of 5G CNFs, as almost all of CNFs

communicate over the SCTP protocol.

Our final architecture tools and technologies are gathered in table }.1.

4.3.2 Management & Deployment of Network Functions

For the telecom network, we rely on a multi-slice 5G Core Network provided by the OAI
platform, which consists of the following containerized CNFs: 1) Network Repository Func-

tion (NRF), 2) Unified Data Repository (UDR), 3) Unified Data Management (UDM), 4)

84 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

Table 4.1: Experimental Setup of the Edge Infrastructure

System Description
Nodes 1- Control Plane Node & 3-Worker Nodes
CPU Intel-Core 17-3770 @ 3.40 GHz
RAM 32GB
K8s Version 1.19.0
Container Runtime Containerd

KubeVirt Version 0.45.0

CDI Version 1.43.0
CRIU Version 3.14.0
RUNC Version 1.0.2-dev

K8s NFS Provisioner | NFS Subdir External Provisioner

5G-Core NFs OAI Multi-Slice Core Network
5G-RAN OAI RF-Simulator & UERANSIM
5G-UE OAI NR-UE

5G-SLICE URLLC

Authentication Server Function (AUSF) 5) Network Slice Selection Function (NSSF), 6) Ac-
cess and Mobility Management Function (AMF), 7) Session Management Function (SMF),
8) User Plane Function (UPF). In this deployment, there are two Network Slice Selection
Assistance Information (S-NSSAIs) configured, therefore two slices: 1) Ultra Reliable Low
Latency Communications (URLLC) 2) Massive [oT (MIoT). However, we mainly focus on
the URLLC slice. The NSSF, UDR, UDM, AUSF, and AMF are common to all slices, while
UPF, SMF, and NRF are unique for each slice.

Likewise, for the RAN, we employ two different RAN simulators: ueransim and rfsimula-
tor [[77] corresponding to our two different slices. Specifically, we utilized the disaggregated
architecture from the rfsimulator including the CU and DU components, as the result of the
gNodeB disaggregation into CU/DU. For the User Equipment (UE), we employed the OAI
5G-NR UE.

Since SCTP socket maintenance is not supported during the live migration of the pods, we

decided to nest some of the containerized NFs inside the KubeVirt VMs, in order to be able to

4.3.3 Architecture of the DRL Migration Environment 85

migrate them across the edge nodes. Some of them are UPF, SMF, AMF, and GNB-CU. Their
selection was made because most of them are stateful functions and are of significant interest
for live migration due to their importance in the control plane proper operation/maintenance
and in the QoS that the UPF provides [78]. In opposition, edge services are better to run in
pods, so that they can be quickly migrated, as a decrease in QoS in the user plane has a direct
impact on end users, while the change in performance of the control plane doesn’t directly

affect the end user’s experience.

4.3.3 Architecture of the DRL Migration Environment

As known, in case of a pod failure, the k8s control-plane node launches a new container
in another node to replace the failed one. However, this can cause quite a few problems in
an Edge 5G Network. Initially, QoS ceases to exist as there is no service availability. Even
worse, crucial CNFs that are essential to the operation of a core network can stop working.
In addition, when a network is characterized by its slice, as in the case of URLLC, the new
pod that is deployed should be migrated not only to the healthiest node but also to the node
that gives the lowest latency with the end-user. To determine the best candidate node we
need to observe either the position of the UE or the latency measurements of the neighbor
cells/servers along with the load of each node.

As discussed in chapter, the LMF uses various techniques to measure the location of
UE, including using Global Navigation Satellite System (GNSS) signals or using signals from
the network itself. However, such techniques face accuracy errors and require good network
time synchronization. The 16th release of 3GPP includes support for multi-cell Round Trip
Time (RTT) measurements as a new feature in the LMF. Specifically, the UE sends Sound
Reference Signal (SRS) requests and receives Position Reference Signal (PRS) responses
from multiple Base Stations. We decide to observe the multi-cell RTT measurements for
our migration decisions since this method is robust against network time synchronization
errors [[79]. Additionally, RTT is a more suitable metric for our solution, as it indicates the
responsiveness of each cell which sometimes is independent of the UE position (e.g huge
cell capacity). Therefore, we end up relying on two metrics for migration decisions. The
average RTT between the UE and the edge servers/cells, and the /oad of each edge server.
We define the average RT'T", R; between the edge nodes and the UEs that the LMF monitors
by equation .1; where z; are the average RT'T values of the last N transmissions per UE-

86 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

node pair. We also define the total load L; of each edge node in the cluster as the uniform
degree along multiple dimensions as described by equation §.2. The variables cpu; and mem;,

are the average utilization of cpu and memory respectively for the corresponding edge server.
Ri= () @.1)
i = %7 L .
N

L;

T 1 cpu; "1 — mem, (4.2)

Service migration is a challenging problem due to the dynamic nature of the environ-
ment and the complex interactions between the UE, the servers, and the network. Traditional
approaches to service migration, such as rule-based or heuristic-based methods, may not be
able to adapt to changing conditions or handle complex dynamics effectively. Model-free and
policy-based Reinforcement Learning (RL) is well-suited for dynamic environments where
the conditions may change over time, such as in a service migration environment where the
UE is moving and the loads on the servers may vary. By using RL, the agent can learn an
optimal policy for minimizing the RTT between UE and the servers, and for balancing the
loads on the servers. This can help to improve the overall performance of the system and
provide a better experience for the UE. Traditional RL algorithms such as Q-Learning, use a
Q-table to store each state and the corresponding values of all actions (Q-value). However,
this cannot scale if the state space expands, since the Q-table will also become larger, result-
ing in inefficient learning. Deep Reinforcement Learning is particularly effective at adapting
to these changing conditions, as it can learn from a large amount of data and can generalize
to unseen situations. Moreover, DRL employs a Q-function rather than a Q-table and utilizes
deep neural networks (Deep Q-Networks/DQN) that estimate the Q-function, resulting in ef-
fective and scalable learning. By taking the aforementioned into account, and by exploiting
the edge migration capabilities of our architecture, we designed and implemented a DRL

Service Migration framework. The architecture of our solution is illustrated in Fig. §.2.

We created two identical custom environments, by utilizing the OpenAl Gym platform

[80]. The first one is a simulation environment for training purposes, playing the role of a

4.3.3 Architecture of the DRL Migration Environment 87

Q Network Target Network

Environment Input Layer Hidden Layers Output Layer Input Layer Hidden Layers Output Layer
Replay Memory

Selectan

\) R Action ———— £- greedy action
0, Sl @, 8] [| sl
APP #1 APP 2| Migration [\ 550, APk #3
- Observations Random Batch
S o
pezS) (Sere) @ of (S, ry)
4 b b

Server 1 Server 2
() ()

Update Weights y/

Ve
/e

o

Figure 4.2: Deep Reinforcement Learning Architecture for the Live Migration Environment.
digital twin in the real environment. The second one is for evaluating our solution in a real-
world environment. The only difference between them is that the real-world environment
employs the real cluster and leverages the migration APIs that we developed in the section
K.3.1]. This allows us to safely and efficiently explore a wide range of possible scenarios and
actions without damaging real-world systems. Both environments are modeled as a Markov
decision process, with the same states s, actions a, and rewards . The states can be observed

by the equation [4.3.

S = (Ni,Rl,...RN,Ll,...LN) (43)

In this equation, the states are represented as a tuple of the variables; /N; is the Node where
the set of user’s edge services (pods/VMs) are running and y is the total number of nodes.
In our cluster, we have three edge nodes, thus the states can be redefined as s = (N;, Ry, Ro,
Rs, Ly, Ly, L3). The action space a includes the actions: Wait and Migrate to N; server. The
Migrate action migrates the set of edge services to a specific N; edge server, thus including
as many migration possible actions as the number of edge nodes. The Wait action simply
means that the agent doesn’t migrate the services to any of the candidate nodes at the current
time-step. The rewards r represent the feedback the RL agent receives after taking action in

a given state. We define two local rewards: rz and .

Rpin R; min(Ry;st) R;
= - - 4.4
"R Rz Rma;v * Rz maX(Rlist) ()
Lnin L; min(Llist) L;
= - - 45
" Lz Lmax * Lz maX(Llist) ()

Both rewards determine the feedback for each action taken by the agent from the point of
view of RTT and load of the edge servers respectively. Each reward is calculated to a simi-
lar respective mathematical formula given by equations 4.4 and §.3. In these equations, the

values R; and L; are the current RTT and /oad values of the server that the agent migrated or

88 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

stayed to. The ranges (R,in, Rimaz) and (Lyyin, Limas) are RTT and load Service Level Agree-
ment (SLA) thresholds. Furthermore, the lists R;;5; and L;;5; contain the RTT and load values
for all the candidate nodes. Both rewards are designed to reward/penalize the agent when the
migrated server’s RTT or load values are inside/outside SLA thresholds and when the agent
selects the most optimal/mediocre server between the candidate nodes. Specifically, the first
subtraction of the fractions expresses the ranking of the node in the SLA thresholds, while the
second one expresses the ranking of the node among the candidate nodes. In addition, both
rewards are migration-cost-aware since they penalize the agent if it migrates the services to
less optimal nodes. For example, in the case of RTT if the measurements are the following
for each node: (3, 5, 6),,5 the corresponding reward functions will be: (0.6, —0.2, —0.6) with
thresholds defined as R,,;, = 1 and R,,,, = 20. Although every RTT value is far below the
Rz, the reward functions are negative for the less optimal nodes, preventing the agent from
migrating services to them. This results in resource and bandwidth saving, as the agent will
try to migrate or stay to the most optimal node, instead to follow an always-migrate policy.
However, to better assist the agent to avoid relocating services to the most unhealthy node,

we introduce a migration penalty. This penalty is given by equations 4.6 and §.7.

+5%, if Ry> Runax and Ry=max(Ryjsr)
. (4.6)
0, otherwise
+%st’ if L;>Limax and Li=max(Ly;st)
- @.7)
0, otherwise

Both pr and p;, penalize the agent for exceeding the maximum allowed RTT/load, and
for selecting the node with the worst rank among candidate nodes. Each penalty amounts to
half of the migration cost. This cost is a hyperparameter and in our case, it symbolizes the
maximum bandwidth that can be wasted for one service relocation and it’s a constant. Finally,
the global reward is the sum of the two individual rewards subtracted by the sum of the two
individual penalties, as can be observed by equation 4.§. It is worth mentioning that each
time the RTT or load thresholds are exceeded we terminate the episode. This approach has
been taken, to guide the agent to not violate the SLA and to address the credit-assignment
problem. The credit-assignment problem occurs when the agent receives the reward at the

end of each episode without identifying the responsible actions.

4.3.3 Architecture of the DRL Migration Environment 89

r=rr+rr— (pr +pr) (4.8)

To evaluate the performance of the proposed DRL solution, we employ real-world sce-
narios. Since multi-cell RTT measurements-datasets are not yet publicly available, we imple-
mented a realistic mobility scenario. This scenario emulates a part of a real-world 5G com-
mercial topology, located on State Route 111 highway, California U.S. The map topology
illustrated in Fig. #.3|is obtained by the Ookla 5G Map [81]. Precisely, this scenario emulates
cars traveling on the given highway in both directions, with speeds varying from 80 to 104.5
km /h with the limit of the highway being 105 km /h. On this route, there are three 5G anten-
nas, with approximately equal distance between them. We assume that the edge servers are
located next to the antennas and that we monitor the Muli-Cell RTT measurements through
the LMF. The RTT values are linearly proportional to the Euclidean distances between UEs
and edge servers/base-stations. Also, the RTT values are affected by the radio interference
as random loss, which we generate by adding Additive White Gaussian Noise (AWGN) with
a fixed standard deviation per route. The rate at which the RTT changes depends mainly on
car speeds and different driving profiles. To generate a large variance that could lead to efti-
cient learning and generalization of the agent, we distribute the variety of speeds uniformly.
Subsequently, the RTT values of UE/cell pair change as dgrr; = % + A, where the d; is the
distance between the UE and the corresponding edge server, vi is the velocity defined by
v; = uniform (80, 104.5) and the random-loss A = awgn(0.5,0,1).

To emulate realistic edge workloads, we relied on Google cluster workload traces [82].
This open dataset includes resource requests and usage measurements from Google’s Borg
cloud clusters, for an entire month. Specifically, we utilize the average cpu and memory us-
age from three different machine IDs in the cluster, given by the corresponding equations:

S (Uepu) 2(Umem) - Tsample

cpu = 722 and mem =

window Twindow

. The variables Uy, and Upen are the cpu and memory
usage respectively, while the Tiindow 1 the measurement window and Tamplc is the length of
the sample. We obtain the cpu and memory every time-step and we calculate the total load
per edge server given by equation #.2. In order to avoid overfitting and to have a large vari-
ance to the repetitive load scenario we apply additional Gaussian noise to memory and CPU
respectively. The noise is applied each time the scenario is repeated and follows a normal
distribution with a mean of 0 and a standard deviation of 1 for both cpu and mem metrics of

each node.

90 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

This way we can observe all the states that we defined on tuple 4.3 by emulating mobility
and load scenarios that take place in a well-defined real-world topology with realistic load

patterns among the edge servers.

Brawley, CA
{(Al)_ ¥ Calipatria, CA

Y ~ETT§_) ((]\))_ ~._RTT, Niland, CA

NG SN TV

California State Route 111 Highway

Figure 4.3: Part of a real-world 5G commercial topology located near State Route 111 high-

way, California U.S.

To learn an optimal policy for this environment using DRL, we utilize a deep Q-network
approach, where the DQN agent is trained to predict the expected reward for each action in
a given state via the Q Network. The Q network is a neural network and in our case, the Q
network is a Multi-Layer Perceptron (MLP). It is responsible for approximating the action-
value function ()(s, a) and is updated at each time-step based on the current state and chosen
action. In order to stabilize the learning process, we implemented also a target neural net-
work in our system. The target network is identical to the Q network and is used to generate
the target values for the Q network updates [83]. The target network is not involved in the
training and it is only updated by the Q Network periodically. This results in the reduction of
the variance in the learning process and can improve the stability of the system. In addition
to the Q network and target network, we employ a replay buffer to store past experiences and
sample them during the training process. This helps to decorrelate the experiences and can
also improve the stability and sample efficiency of the learning process. In more detail, the
Q(s,a) is updated based on experiences in the environment, which are stored in the replay
buffer and sampled for learning. At each step, the Q network takes the current state as input
and produces a vector of estimates of the action-values for each possible action. The Q net-
work is then updated using gradient descent to minimize the mean squared error between the
predicted and target values. The target network is periodically updated to match the weights
of the Q network and produces the target values. Then, computes the estimated return of

taking the selected action in the current state and the optimal action in the next state via y;:

4.3.3 Architecture of the DRL Migration Environment 91

Yi =1+ ’)/HlEILX th‘get(sla a/; 0)

where 7 is the reward received after taking action a, s’ is the next state, v is the discount
factor that controls the importance of future rewards and # symbolizes the updated weight
parameters. Finally, the Q(s,a) is updated based on the cost function L () which is the squared

difference between target Q and predicted Q:
L(e) = Es,a,r,s’ [(yz - Q(Sa a; 0)>2]

In addition to the DQN algorithm, we also implemented another RL algorithm called
SARSA (State-Action-Reward-State-Action). In contrast with DQN, SARSA is an on-policy
algorithm as the ()(s, a) is updated based on the current choices of the policy. The SARSA
algorithm differs from DQN in the way the target values are computed. Instead of using the
maximum expected future reward, SARSA uses the reward and the expected action value of

the next state to update the current action value via y.:
y; =7+ ’YQtarget(S/a CI,/; 9)

In our implementation, the SARSA agent employs a similar DRL architecture as the DQN
with a Q-network (MLP neural network). However, in our case, SARSA doesn’t utilize a
replay buffer and a target network. This kind of implementation is mentioned by the literature
as Deep Sarsa or DSOQN [84].

To address the “exploration vs exploitation” problem, we employ the LinearAnnealed-
Policy for both algorithms. In this policy, the exploration rate e that controls the probability
of selecting a random action is decreased linearly. This reduction rate is controlled by the
exploration rate decay d which directs the rate at which e decreases over time. This allows
the agent to gradually shift from exploration to exploitation as it learns the optimal actions
for a given state. To implement the DQN and SARSA architectures we relied on TensorFlow
keras-r]2 python library.

All the aforementioned hyper-parameters and the corresponding values we used for the
optimal training are gathered in the table after extensive experimentation. The common
hyper-parameters of DQN and DSQN algorithms such as Q network, 7, «, €, and d are chosen

to have the same values for close comparison.

92 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

Table 4.2: Deep Reinforcement Learning Parameters.

Parameter Value

Deep Q Network MLP

Deep Q Network depth | 2

Hidden layer depth 24
Optimizer Adam
Activation ReLU

Target Model Update 20

Replay buffer size 20000

Discount factor y 0.99

Policy LinearAnnealedPolicy
Learning rate « 0.001

Exploration rate ¢ 1.0

Exploration rate decay d | 0.1

Number of steps 200000

4.4 Evaluation

For the evaluation part of the Edge-Cloud Infrastructure, we initially compared the migra-
tion times on KubeVirt VMs and pods in various types of applications: 1) Text Application
server, 2) SIPp [59] server, and 3) VLC streaming server. The SIPp application uses Session
Initiation Protocol (SIP) to transfer VoIP packets. As illustrated in Fig. #.4, the migration
times are considerably lower in the pods compared to the KubeVirt VMs. However, the mi-
gration times of the VMs are generally not prohibitive. Next, we focused on the migration
times of VMs that are hosting various NFs including SMF, UPF, AMF, and CU. The oper-
ation of the network functions is uninterrupted and the AMF-VM has the longest migration
time and this can be observed by Fig. }.3. Next, we captured the latency and the throughput
that the end-user experiences during the interactions with the SIPp server while the server
was migrating to other edge nodes, as a pod, and as a VM. The results are displayed in Figs.
K.d and 4.7, where in both plots, the vertical-dotted line denotes the time that the migration
was initiated. Fig4.d shows that the VM migration had a smoother impact on the experience

of UE in contrast to pod migration which completed much faster (at 47th second), but had

4.4 Evaluation 93

a significantly higher spike in the observed latency. Fig.4.7 shows that the end-user had a
seamless experience in terms of throughput in both virtualization technologies. There was
only a small imperceptible drop during the migration, which was followed by a small rise. It
is worth noting that the service relocated to a node that is closer to the UPF/g-NodeB. There-
fore, a small drop in jitter and a small increase in throughput are subsequently observed. To
capture both the jitter and throughput in real-time, we utilized the scapy [85] python library.

Toward evaluating the DQN and DSQN agents, we trained both agents for 200.000 steps.
Fig. B.9 illustrates the average reward over the training episodes for the two agents. Both
agents were able to learn and improve their performance over the course of the episodes.
Moreover, they explored the action space effectively in the beginning, and then switched
to exploiting the learned policy as the episodes progressed. Specifically, before the 600th
episode both agents were fully exploring the environment. After the vertical line, the agents
progressively started exploiting and this is demonstrated by the increase in average reward
over the episodes which by the end converged. However, the DQN agent had a better perfor-
mance, as it reached higher rewards. This denotes that the DQN agent is trained efficiently,
as there’s a good balance between exploration and exploitation. Additionally, the DQN agent
maintained the QoS at higher levels during the phase of exploiting. This is indicated by Fig.
K.10, which displays the increase in the average episode duration. The QoS is increased since
we terminate the episodes, each time the RTT or load thresholds are exceeded. This means
that the DQN agent took better actions that met the conditions of the SLA. Although some-
times failed to not violate the SLA, due to the fact that the cluster might be overloaded. For
the aforementioned reasons, the DQN agent qualifies for the taking of service migration de-

cisions.

We evaluated the DQN agent’s performance, in the real-world k8s cluster with the devel-
oped migration APIs. Specifically, by taking advantage of TensorFlow’s save/load methods
we loaded the saved agent’s model weights and started testing it in our second evaluation
environment. We employ the mobility scenario, by emulating a car that has the max speed on
the highway for one round-trip (two-way route). We also apply an unseen heavy edge work-
load from one specific day of the entire measurement month by leveraging Google’s Borg
cloud cluster dataset. The OAI-NR-UE interacts with the SIPp server that is packaged as a
pod, in order for the agent to achieve the least migration times. The footprint of this experi-

ment is illustrated in Fig. . The RTT and load thresholds are R,,,, = 20 and L,,,, = 12

94 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

KubeVirt VM s Pod mmmm 40
;g 35
@ < 30
o %0 g€ 25
£ 25 =
' 20 = 20
c 2
2 15 B 15
= ()]
2 10 s 1071
=i 5
0 0
Chat-Application SIPp VLC-Streaming UPF SMF CU-GNB AMF
Edge Services 5G Network Functions
Figure 4.4: Migration time on services: Figure 4.5: Migration time on NFs as
VM vs Pod. VMs.
VM (SIPp) —— Pod (SIPp) —— VM (SIPp) —— Pod (SIPp) ——
25
20 2 126]
2 g v\ g
E 15 “ = 0945
AN g "
£ 10 NV - | A S 063
- 3
5 | U i E
£ 0315
O 1 1 1
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time (s) Time (s)
Figure 4.6: End-to-End Jitter during mi- Figure 4.7: End-to-End Throughput dur-
gration of services: VM vs Pod. ing migration of services: VM vs Pod.

Figure 4.8: Live Migration measurements.

respectively. At the beginning of the experiment, the agent stays on the optimal Node 1.
Then at the time points 1 and 2, the agent follows the UE by relocating the service near the
end-user (Follow-Me approach), before the RTT threshold is exceeded, and at the same time,
schedules it in healthy nodes. Before time point 3, the service is running on Node 3 but as the
RTT increases the agent should relocate the service to a better candidate node. However, in
that case, every node is out of SLA thresholds, so instead to migrate the service to the over-
loaded but with satisfactory RTT Node 2, it remains on Node 3 violating the SLA but saving
resources. Finally, at time point 3, it relocates the service to Node 1, which falls within the
SLA thresholds. This implies that the agent learned the policy successfully, as it proactively
relocated the service to the nodes with the optimal RTT and load values and saved resources

without performing unnecessary migrations.

4.5 Conclusion 95

DQN-Agent

DSQN-Agent

DQN-Agent

DSQN-Agent

-
[é)]

—_—— g

—
© N

™

pre 1

Average Reward

; 0 E Mg H
200 400 600 800 1000 0 200 400 600 800 1000
Episodes Episodes

ORANONPAOOON RO
N
. TS
Average Episode Duration (min)
[e)]

o

Figure 4.9: Average reward per episode Figure 4.10: Average duration per episode

during training. during training.

Figure 4.11: Agents training evaluation: DQN vs DSQN.

O & ®

30 N Node 1
] — Node 2
2 204 — Node3
5 10 15 20 25 3 35 40 45
=
Node 1 \ - =y
I - n
- 139 == ot I" ‘L_J ‘_f; ll
E 10 == Nede3 “_,_—.__.-———‘_____,:—-\‘
v
Stemrent e = St (L Y
s e SEsS===== 3 N
5 10 15 20 25 3 35 40 45
E 3 4 =@ Edge Pod Service (SIPp)
2 f"""""'"
w2 rﬂ.mﬁ
w
0
= mnoo-*
[5a]
5 10 15 20 25 30 35 40 45
Time (min)

Figure 4.12: DQN agent’s actions during user’s movement in the highway, in an overloaded

edge cluster; vertical lines denote when the migrations take place on pods.

4.5 Conclusion

In this chapter, we developed and experimentally evaluated an SLA-aware 5G edge in-
frastructure that offers high QoS to the end users regardless of their mobility. We developed
the necessary migration capabilities in a k8s environment supporting VM and pod technolo-
gies. Our system provides continuous low-latency access to the edge services and an unin-
terrupted throughput experience. On top of this setup, we implemented a digital-twin envi-

ronment that is identical to the real-world environment and we developed DQN and DSQN,

96 Chapter 4. Deep Reinforcement Learning based Service Migration for 6G Networks

migration agents. After the training of our agents in the simulation environment, we employed
the DQN agent’s model weights in our real-world infrastructure. Our results denote that the
DQN agent successfully learned the policy based on multi-cell RTT measurements and the
workload of edge servers. Our framework can dynamically and proactively relocate MEC
apps in a k8s environment depending on the experience of the users and the condition of the
edge nodes. In the future, we foresee extending our scheme to support proactive handover

decisions synergistically with service migrations.

Chapter 5

Service Aware Network Slicing for 6G

Networks

5.1 Introduction

Edge Intelligence is widely considered the key element for empowering innovation and
enabling the beyond 5G and future 6G networks to meet their full potential. It is expected
that within 6G, edge intelligence will enable networks to achieve massive performance gains
through unique functions and services that take advantage of the close proximity to the Radio
Access Network (RAN), while re-program the network operation through the available APIs
(e.g. O-RAN for the RAN). Artificial Intelligence is thus playing a major role in this context,
allowing the transformation from network observations to key decisions that affect the overall
system performance and reliability, even under high traffic loads. [86] Such decisions are
fortified through the Multi-access Edge Computing (MEC) architecture, enabling low-latency
applications to be hosted over the network with traffic breaking out from the edge to any Data
Network (DN) [87].

The cornerstone for all these innovations is the wide softwarization that has taken place
in 5G and beyond networks; services that up to the 4th generation were running as monolithic
components, locked in vendor-specific hardware, are currently able to be hosted over generic
hardware, running as software network functions. The components have been further disag-
gregated, by specifying standardized interfaces for their intercommunication, realizing a full
Service Based Architecture (SBA), capable of instantiating in a cloud-native manner. This

approach extends even for the cases of the RAN, for the higher level functions of the base

97

98 Chapter 5. Service Aware Network Slicing for 6G Networks

stations, that can be realized through software functions placed on the edge/cloud, commu-
nicating with the Radio Units through high capacity fronthaul links (Cloud-RAN) [88]. The
combination of all these features, empowered by Edge Intelligence, creates fertile ground
for introducing novel services that manage the virtualized cellular network even in real-

time/near-real-time.

Network slicing is a fundamental concept in 5G networks. It refers to the process of cre-
ating multiple virtual networks on top of a shared physical infrastructure. Each “slice” is
tailored to meet the specific requirements of a particular service or application, ensuring op-
timal performance and resource utilization. Although such innovations allow the efficient
provisioning of network service under one/more slices with guarantees, usually it is up to the
hosted applications to self-adapt to the fluctuations of the network service. For example, in
the case of adaptive video streaming, protocols like DASH [89] might request the specific
content that can be served over the network, based on the application perception of the net-
work settings (e.g. capacity, jitter, delay, etc.). The disaggregation of network functions, as
it has been standardized for 5G, enables the development of further key x4pps that can take
advantage of the APIs, allowing the network to self-adapt based on the applications that are
hosted over the top, through the decisions for allocation in the network. Such decisions are
usually based on the spectrum allocation (e.g. for Dynamic Spectrum Management [90]), or
slicing allocation. In this work, we deal with the slicing part of the network, for automat-
ing the slice allocation of the network, based on the services that run on top, thus creating a

fully-fledged service-aware network.

The development of such functionalities relies heavily on resource disaggregation as de-
fined for 5G networks. This disaggregation has been standardized for different parts of the
network (Control/Data Plane and RAN/Core Network) as follows: 1) RAN disaggregation
for the base station stack, based on the eight different 3GPP defined functional splits [91],
and 2) control and user-plane disaggregation, either at the Core Network side through the
adoption of SBA, or the RAN, through the adoption of architectures like O-RAN. In the O-
RAN architecture, applications hosted on top at the edge of the network (xApps [92]) can
retrieve statistics of the base station stack through standardized interfaces and analyze them
for inferring features like network load, energy consumption, etc. Based on this inference,
they can enforce policies regarding slice allocation and scheduling to ensure the smooth op-

eration of the network. The inference relies on ML models, that can predict the future evolu-

5.1 Introduction 99

tion of the monitored features/parameters, and thus apply pro-actively the target allocations.
The O-RAN architecture can be further enhanced with the Network Data Analytics Func-
tion (NWDAF) which is standardized by 3GPP. NWDAF is a network-aware function that
collects data from the 5G core and provides statistics to support network automation. These
statistics can be employed by AI/ML models that run on RAN Intelligent Controllers (RIC)
and can provide forecasting and optimization of Key Performance Indicators (KPIs) [93].

Leveraging Edge Intelligence, ML operations can be launched directly on the edge by
taking advantage of several devices if needed in an entirely distributed manner, making use
of pipelines. In this work, we design, develop, deploy and experimentally evaluate a service-
aware network model for beyond 5G networks. We use a cloud-native network, with the entire
stack (RAN and Core Network) being instantiated through the Kubernetes framework. We de-
velop all the necessary extensions to support near-real-time (< 10ms) low-level monitoring
of the traffic exchanged over the network. On top, and towards enabling accurate decisions
for the slice allocations in the network, we use a distributed ML model, able to classify in
real-time the traffic exchanged from the different users of the network and infer the future
connectivity needs that are needed from the applications. The needs are in turn transformed
into slice-allocation decisions for the 5G network. Our ML models have been developed in
a distributed lightweight manner, allowing different parts of the training process to be exe-
cuted at/near the edge devices, where processing power is usually limited. By decomposing
the main model into lighter components and making extended use of pipelines, we are able
to instantiate the framework at the edge and affect the wireless network allocations directly
from there, thus augmenting the network with edge-located Intelligence.

Our contributions are summarized as follows:

 To develop a real-time classification model, hosted on the operator side of the network,

recognizing the different applications that run on top of the network.

* To infer the future load and patterns of traffic from the different traffic flows of the

applications that are hosted on top of the network.

» To decide on the slice allocation that is enforced in the network, based on the foreseen

needs of the applications.

* To determine the optimal approach for predicting the future demand, from a set of

different supervised ML models.

100 Chapter 5. Service Aware Network Slicing for 6G Networks

* To evaluate the developed scheme under real-world settings, using real devices and

realistic traffic scenarios in real-time.

The rest of the work is organized as follows. Section [5.2 presents our motivation, based on
a recent literature review. Section B.3 presents our overall system architecture, detailing the
different components and their intercommunication, as well as an evaluation of the different
ML models that drive our final choices. In Section we evaluate our contributions and
present our findings. Finally, in Section 5.6 we conclude the work and present some future

directions.

5.2 Related Work

The disaggregation of the telecommunications stack has been identified as one of the key
enablers for flexibility, and further innovations for the beyond 5G and future 6G networks.
By taking advantage of the disaggregation and existing approaches for an end-to-end SBA,
the telecom stack can be instantiated as cloud-native functions throughout the resource con-
tinuum, thus allowing network operators to take advantage/extend existing approaches for
VNF management, tailored to network-specific characteristics. Several of the works in the
relevant literature focus on managing the deployed components as VNFs, divided mainly into
the following categories: 1) Placement of the VNFs [94], [95], [96], [97], 2) load that they
are receiving [98], [99], [L00], and 3) scale of the functions [101], [[102], [[103].

The most outstanding effort reflecting these architectural approaches is the definition of
the Open-RAN (O-RAN) specifications [92]. O-RAN standardizes the interfaces for inter-
acting in real-time, near real-time, and non-real-time with different components of the RAN
stack, enabling the network to re-configure dynamically, based on operator-detined policies.
Opening up the programmability of the RAN has created several opportunities for the in-
tegration of Artificial Intelligence methods, which infer based on historical observations of
metrics on the future resource usage, and appropriately manage the network services.

In the realm of RICs for telecommunication networks, several solutions, both open-source
and proprietary, are available. FlexRAN [39] stands out as a flexible and programmable plat-
form tailored for Software-Defined Radio Access Networks (SD-RAN) and is compatible
with the open-source OAI platform. Its successor, FlexRIC [40], serves as a software de-

velopment kit (SDK) designed for next-generation SD-RANS, allowing its customization in

5.2 Related Work 101

the functions that the user needs to perform on the RAN. On the proprietary front, Athena
Orchestrator—O-RAN SMO & RIC [[104] is an Al-driven platform optimized for energy-
saving management in 5G-ORAN compatible private networks. Additionally, FlexSlice [[105]
introduces an innovative approach, presenting flexible control logic topologies—centralized,
decentralized, and distributed—to refine the O-RAN architecture for reduced control loop la-

tency.

Different methods of Machine Learning are employed for the prediction of different net-
work metrics, depending on the metrics themselves and their fluctuation to incoming load.
For example, in [[106], authors present a conceptual model for 6G networks and show the use
and role of ML techniques in each layer of the model. Different ML methods are examined
for the different parts of the stack, including supervised and unsupervised learning and Re-
inforcement Learning (RL). Regarding supervised learning, they employed Deep Learning
(DL) in a distributed manner with the use of Federated Learning (FL). The application of ML
has opted in several works dealing with the characterization of traffic exchanged over the
network. For instance, in [[107], the authors classified the traffic according to application and
bandwidth-related features. Furthermore, the networking systems can identify factors that af-
fect the operation of the network (e.g. external traffic for DDoS attacks) and appropriately
employ the respective mechanisms for reinforcing the operation of the network (e.g. firewall
operation, slicing of traffic, etc.). For example, in [[108], authors employ a federated ML ap-
proach that can be ideally realized in networking switches, towards detecting intrusions in
the network by processing packets at the bit level and at line-speed. In [[109] authors use a
non-parametric approach for traffic classification, which can improve the classification per-
formance effectively by incorporating correlated information into the classification process,
using the nearest-neighbour approach. Their approach demonstrates significant performance
benefits from both theoretical and empirical perspectives in the literature. Authors in [[110]
employ cluster analysis for the case of peer-to-peer networks that use dynamic port numbers
for the communication between participating nodes. Their presented approach demonstrates
how cluster analysis can be used to effectively identify groups of traffic that are similar us-
ing only transport layer statistics. Finally, surveys [[111,[112,[113,]114] organize the different
traffic classification techniques that have emerged in literature for analyzing traffic based on

either their headers, or the payload, and whether it is encrypted or not.

Similarly, in [[115] authors propose the adoption of ML for orchestrating different tasks

102 Chapter 5. Service Aware Network Slicing for 6G Networks

of 5G and beyond networks, such as massive MIMO, heterogeneous network integration and
spectrum access, energy harvesting, and others. In [[116], authors introduce the concept of
XApps, running on top of the O-RAN architecture. These are network management applica-
tions, that rely on statistics exposed from the stack at different levels. Based on the decision
time, xApps can be running in near real-time or non-real-time fashion. In [117] Thantharate
et al. propose the ECO6G model, leveraging a Machine Learning approach to forecast traf-
fic load for improved energy efficiency and OPEX savings in B5G networks. This research
demonstrates that ECO6G significantly outperforms traditional forecasting methods in en-
ergy savings, presenting a vital step towards sustainable and cost-effective network manage-

ment.

Regarding the type of policies and enforced decisions, several works deal solely with al-
locating resources for slicing the 5G network. In [[118], authors employ Federated Learning
as a means of predicting the evolution of each KPI in a per-service manner. Subsequently,
they allocate the slices in the network. In [[119], similar functionality is suggested, using the
FlexRAN controller for reactively enforcing decisions regarding the network operation. Nev-
ertheless, truly online training and decision-making in such systems pose a significant chal-
lenge, as model training can consume slice resources. Authors in [[120] propose their solution
for combating such issues with an online end-to-end network slicing system, able to achieve
minimal resource usage while satisfying slices’ Slice Level Agreements (SLAs). In [121]] the
Probabilistic Intra-slice Resource Service Scheduling (PRSS) algorithm is introduced to opti-
mize 5G network resource allocation. Designed in two stages—service throughput estimation
via a multinomial probabilistic model and dynamic conditional resource estimation for new
services. Its efficiency is demonstrated through analytical and simulation results, showcasing

its capability to efficiently manage 5G network resources.

In this chapter, we developed a solution for enhancing the network operation with intelli-
gence, based on the type of services hosted over the top. By employing a service classifier, we
were able to determine in real-time the type of application running on the top and decide on
the allocation of slices over the network in almost real-time. Moreover, our research stands
out by implementing a thorough MLOps strategy, contrary to numerous previous studies that
deploy deep learning models on fixed datasets, neglecting the emergence of new data pat-
terns and the ongoing management of the model. To clarify our pivotal contributions within

Table B.1|, we present a suite of innovative advancements that distinguish our research from

5.2 Related Work

103

Table 5.1: Comparison of state-of-the-art with our approach.

Works | Approach Evaluation

[116] | Open RAN for 6G networks focusing on | Highlighted modular approach and AI/ML
modular traffic steering implementations. | benefits in simulations; model lifecycle not

discussed.

[117] | A supervised ML approach for forecasting | Centers on model development and vali-
traffic load to evaluate energy efficiency | dation using real-world 5G data, omitting
and OPEX savings in B5SG networks. live deployment details and lifecycle dis-

cussions.

[118] | Uses Federated Learning to predict service- | Proven in simulations to enhance KPI ac-
oriented KPIs for 5G network slices, ad- | curacy, ensure privacy, and cut communi-
dressing privacy and scalability challenges. | cation costs. Highlights gaps in model life-

cycle and scalability discussions.

[119] | A RAN runtime slicing system for flexi- | Prototype development demonstrated on
ble reactive slice customization in 5G net- | OpenAirlnterface and Mosaic5G plat-
works, utilizing a runtime SDK for agile | forms, focusing on system capabilities.
control application development.

[120] | Online DRL for dynamic end-to-end net- | Surpassed rule-based and DRL methods in
work slicing, focusing on SLA satisfaction | resource efficiency and SLA compliance in
and resource optimization. simulations. Omits new traffic adaptation,

real-world validation, and lifecycle man-
agement.

[121] | Introduces PRSS for optimizing 5G net- | Demonstrated efficiency through analyti-
work slicing with a two-stage probabilistic | cal and simulation results. Lacks details on
model for resource estimation. deployment, handling new traffic patterns,

and model lifecycle management.

[122] | Slices resource orchestration using ML | Showcased better prediction and efficiency
techniques for dynamic slicing of PRBs, | in simulations against static and random
admission control, and resource manage- | slicing. Lacks real-world deployment de-
ment. tails and model lifecycle.

This A fully cloud-native, service-aware real- | Validated in a real-world environment;

work | time network slicing model leveraging ML | showcased superior latency and throughput

for traffic classification, mobility forecast-
ing, and utilizes MLOps for model lifecy-
cle management with online and distributed

training.

improvements. Emphasizes practical de-
ployment with a focus on adaptability and
continuous optimization through a robust

MLOps framework.

104 Chapter 5. Service Aware Network Slicing for 6G Networks

existing state-of-the-art solutions:

* Leveraged the OpenAirInterface for the RAN and Core Network, running in a cloud-

native disaggregated manner using micro-services.

« Utilized programmable attenuators connected to the RAN to simulate realistic mobility

scenarios.

* Implemented a custom NWDAF, enriching the dataset with metrics (throughput, jitter,

CQIs) for enhanced traffic analytics and mobility insights.

» Used supervised learning to forecast various features and evaluated the solution with

6 different neural networks.

* Introduced and evaluated an MLOps architecture that leverages cloud/edge computing

in the resource continuum for Online and Distributed Training among cluster nodes.

* Evaluated the framework in a real-world setup with commercial UEs connecting to the

network, generating realistic traffic patterns.

5.3 System Architecture

Our experimental setup consists of a cloud-native disaggregated 5G network fully de-
ployed on the Kubernetes framework. This way, we take advantage of the multiple benefits
provided by an application container orchestrator like Kubernetes, such as the management
and monitoring of resources and dynamic scaling of the 5G VNFs. The 5G network is en-
riched by a novel distributed AI/ML unit for continuous distributed training-prediction and
slicing. Fig. summarizes the framework’s architecture, showing the deployment of the
service-based 5G network, the introduced distributed AI/ML unit, and the internet applica-
tions that the end-users interact with. We deploy the framework in the NITOS testbed [37], a
remotely accessible facility located at the University of Thessaly, Greece. NITOS testbed pro-
vides Software Defined Radios (SDRs), User Equipment (UE) terminals, and programmable
attenuators. All these devices are utilized to develop our solution in a real-world environ-
ment. Below, we list the essential elements of our Al network slicing solution that enables

provisioning high QoS and continuously user-perceived high QoE.

5.3.1 Management and deployment of the network functions 105

Programmable Attenuator

(120 dB Range)
T
Disaggregated —
RAN
D UE 0
Service-Based O =
Core Network Cu DU =~ - el T
él-;‘RANAgmt"._ -DLEI
Internet 'y A
" . . -~
Traffic Classification S 'DUE N
h 4
Core & RAN Analytics ® . Post Slice
. My 8 N=1.20
Function CRAE Fyshark
Feature Extraction v
y
Post Slice @
0 E L r" TensorFlow oy E exRAN
Uil Kubeflow CQl Metrics | commoller

Distributed Al-ML Unit Real-Time Controller

Figure 5.1: Experimental Setup - The deployment of Cloud Native-Al 5G Network on Ku-

bernetes.

5.3.1 Management and deployment of the network functions

Our telecom network follows a serviced-based architecture which consists of container-
ized network functions. The containerized deployment relies on the open-source OpenAir-
Interface platform. We specifically leverage the LTE implementation of the OAI platform,
opting for its stability and mature RAN slicing support for multiple User Equipment (UEs),
a feature not yet fully developed in the current OAI 5G NR implementation. Despite this,
our solution seamlessly integrates with 5G architecture, requiring minimal adjustments to
the overall framework. For instance, substituting the LTE Evolved Packet Core (EPC) with
5G core network components (HSS/UDM, MME/AMEF, SPGW-U/UPF, SPGW-C/SMF) and
transitioning from a disaggregated eNB to a disaggregated gNB can be achieved effortlessly.
It’s worth noting that our approach to the LTE Evolved Packet Core (EPC) involves the use
of Control and User-Plane Separation (CUPS), allowing each component to operate in iso-
lation. Our work focuses on RAN-level allocations, utilizing interfaces envisaged for 6G
network operation, such as the O-RAN E2. Notably, our solution remains independent of
dedicated slicing components from the 5G architecture, like the Network Slice Selection
Function (NSSF). The key distinction with the 5G RAN lies in the absence of full slicing
support, with the primary difference being the data rate rather than core functionalities. For
the experimental evaluation of our architecture, we created a cluster of three NITOS nodes as
Kubernetes workers, while the control-plane node was running on a separate VM. Below, we

analyze our cloud-native approach for the deployment of the network functions down from

106 Chapter 5. Service Aware Network Slicing for 6G Networks

the core network, up to the end-user.

Service-Based Core Network

The core network architecture follows control and user-plane separation (CUPS). Con-
sequently, each function runs as a separate pod/container providing: a Cassandra database
that holds the subscriptions, the Home Subscriber Service (HSS), the Mobility Manage-
ment Entity (MME), the control plane Service/PDN Gateway (SPGW-C), and the respective
user plane service (SPGW-U). Since there’s not yet an open-source implementation of the
NWDAF we developed a customized function named Core RAN Analytics Function (CRAF).
CRAF plays the same role as NWDAF in our architecture. It collects traffic statistics from
application interactions and KPI network metrics such as Throughput, Jitter, and the CQI. Af-
ter the collection of the data, CRAF stores them in a database. Then, our AI/ML framework
performs feature extraction and preprocesses the data for the model training.

The fact that the individual core network components run separately as micro-services
allows us to easily monitor their status and their consumption in terms of memory, CPU,
and bandwidth. The deployment of the core network is distributed to all Kubernetes workers
ensuring the load balancing between them. The connectivity between the containerized core
network and the Radio Access Network is realized by the Multus Container Network Interface
(CNI). Multus CNI allows us to provide multiple interfaces to pods and create static network

configurations for easy reproducibility of the experiments.

Disaggregated RAN

The containerized Radio Access Network (RAN) follows a disaggregated architecture
including the CU and DU (Central & Distributed Unit) components. This distributed scheme
implements the functional split of the base station. Specifically, the split takes place in the
layer 2 OSI stack, between Packet Data Convergence Protocol (PDCP) and Radio Link Con-
trol (RLC) layers. The CU integrates the upper layers, while the DU integrates the lower
layers (from the RLC and below). The communication between CU and DU is based on the
F1 Application via the F1 interface. The CU container can be deployed in any of the Kuber-
netes nodes from our cluster, contrary to the DU pod that needs to be deployed on a specific
node equipped with the appropriate SDR front device. In the SDR device, a programmable

attenuator is connected, with which we attenuate the signal of the RF device, in order to create

5.3.2 Application-aware AI/ML Unit 107

realistic mobility scenarios.

To obtain RAN statistics such as CQI and to create network slices on demand, we utilize
the FlexRAN network controller. FlexRAN provides flexible and efficient resource allocation
and by this time of writing, is the most stable open-source solution for RAN slicing. We con-
nect the FlexRAN controller to the RAN via the FlexRAN agent running on the CU/DU side.
FlexRAN is also connected to the CRAF and AI/ML unit ambiguously for the transmission

of the RAN statistics and to the establishment of the slicing policies.

End-Users & Internet Applications

To evaluate the network connectivity and collect traffic data, we connected 3 UEs to
the network interacting with 3 containerized applications on the internet. The mobile equip-
ment includes commercial UEs by utilizing LTE dongles. The applications include a video
streaming service, a VoIP application, and an Nginx web server. The reason for choosing
these services is to classify their network needs into data-hungry applications such as video
streaming, medium data-rate applications such as VoIP, and low data-rate applications such
as simple web-server. The video streaming service streams video capture devices by utilizing
the webRTC protocol as it provides real-time communication over the web. The VoIP service
is an application called SiPp that employs Session Initiation Protocol (SIP) for VoIP packet
transferring. The Nginx web server is employed for the generation of HTTP requests. All
services are containerized and deployed onto the same Kubernetes cluster. This allows us, to
deploy them among the SPGW pods on the Node with the SDR device to provide an edge
computing approach. Finally, the traffic can be captured and fed to the CRAF, directly from

the SGi interface of the data-plane network.

5.3.2 Application-aware AI/ML Unit

Developing an efficient AI/ML unit, aware of the network conditions that coordinates
the resources optimally requires considering a lot of parameters. Our approach captures a
large number of features, essential for the slicing decision, including the applications used
by every UE, the Throughput, and the Channel Quality, among many others. Noticeably, the
model receives an input window of multiple time slots, with these features, which represent
the network traffic exchanges between the UEs and the applications in the near past. Thus,

the model identifies the pattern in the traffic and predicts future values. Our goal is to develop

108 Chapter 5. Service Aware Network Slicing for 6G Networks

a robust unit that thoroughly analyzes the overall network conditions and employs a superior
slicing allocation algorithm, leading to peak network performance. Below, we provide infor-
mation on the whole procedure of choosing the proper features, designing an effective traffic
classification scheme, creating real-world network traffic scenarios in the experimental en-
vironment, collecting data, training multiple models, and developing a novel near real-time

slicing allocation scheme.

Feature Selection

Designing a powerful AI/ML model, aware of the plethora of components in a network
architecture requires a cautious feature selection. Thus, we pick many features to capture the
largest possible variance that explains the pattern underlying the traffic exchanges between
the UEs and the applications (apps). Precisely, our features’ list consists of the Applications,
the Throughput, the CQI, the Jitter and the allocated Slices, for every UE of the network.
First, the Application/Service is a principal component of a service-aware implementation
capturing which specific service is used by every UE. This feature indicates the service’s
type, demand, and significance. Importantly, for every UE, we keep one feature for every
application provided by the network; in our case, there are 3 app-features (WebRTC, SIPp
and Nginx). Further, the experienced service Throughput provides essential information about
the bandwidth of the UE-App link. Another vital feature is the CQI that represents the LTE
channel quality, which demonstrates the quality of the UE connection; indicating a great or
poor connection. Moreover, the Jitter monitoring per UE depicts the timing delays between

the UE’s packets, while the Slices show the allocated resource blocks of every UE.

Traffic Classification

For traffic classification, we divide the timeline of every experiment into multiple time
slots of a fixed length, in which we gather the desired network information with the afore-
mentioned features.Importantly, the information in every time slot is organized in a specific
structure. We divide every time slot into multiple UE categories as shown in Fig. 5.2. This
way, the information for every UE is gathered in one category. In our case, there are 6 dif-
ferent features for every UE category, namely WebRTC, Sipp, Nginx, CQI, Jitter and Slice.
The first three features represent the network Services that the UE is able to use. Noticeably,

their values represent the Throughput of the specific UE with the specific service. For in-

5.3.2 Application-aware AI/ML Unit 109

stance, a value of 10 in the WebRTC feature in the first category (UE 1) is translated as 10
Mbps network traffic on the UE 1 using the WebRTC service. The remaining features of ev-
ery category, namely CQI, Jitter and Slice provide additional information on the quality of
the UE connection as well as its allocated resources. As a result, we end up with a number of
columns that is proportional to the number of UEs multiplied by the number of features per
category; in our case, 3 UEs multiplied by 6 features equals 18 total columns (real features
for the model) for every time slot. This is illustrated in Fig. 5.2, where every column of the
tables is a feature and every row is a time slot.

This way, we organize the monitored network traffic into a useful structure to be used
by a model. Precisely, the time slot length is configured to the desired number, for instance,
100 ms. Subsequently, during every slot, we gather all the received packets and extract the
essential information. Firstly, we read the packets’ IP/Transport protocols to classify them to
the appropriate UE-App combination. Then, we count the total number of bytes of all packets
received during the time slot for every UE-App link to calculate the Throughput. This way, we
classify the captured traffic during a time slot to the appropriate columns. Next, we compute
the mean Jitter value between the total packets of every UE in the time slot. On top of that, a
CQI value per UE is requested from the FlexRAN Agent existing in the LTE DU, and finally,
the currently allocated UE slices are recorded as well. For a better understanding, let’s focus
on Fig. 5.2 in the first row of the third input window (¢ = 2). The first 6 values corresponding
to the category of the UE 1 are:

(A,B,C,D,E,F) = (10,0,0, 14, 1,8)

Interpreting this category, we understand that the UE 1 has 10 Mbps network traffic only with
the WebRTC service, an LTE CQI of 14, 1 ms average Jitter, and allocates a slice of only 8%

of the overall network resources.

Real-world Traffic Scenarios

We emulate realistic network behavior in an office by developing multiple network traffic
scenarios. Our goal is to emulate inside our experimental infrastructure the network patterns
observed in an office on a specific time interval of a usual day. We aim at specific time
intervals and not the whole day since our resources are limited. Most users in an office are

expected to have a basic pattern in their behavior. For example, one user might mainly utilize

110 Chapter 5. Service Aware Network Slicing for 6G Networks

UE 1 UE 2 UE 3 A: WebRTC
ABCDEF|ABCDEF ABCDEF B: SIPp
C: Nginx
3 0 0 13 1 12]0 0 28 o 4 208 0 0 3 7 7] D: CQI
:_2, 0 0 0 14 2 12/0 0 26 8 2 16|89 0 0 3 7 7| E: Jitter
ol lsa|®f0 0 0141 8]0 0227 3 16[s9 0 0 3 7 affp | F Slice
Input € 1lsa]%]2s 0 0 14 2 8]0 0 23 8 4 16f86 0 0 2 8 20
Tl 123]%]34 0 0 14 2 8|0 o0 43 8 3 16|83 0 0 4 7 4
Elle 283 37 0 0 14 1 8|0 o0 32 7 3 16|78 0 0 3 8 40
F1]i1%]0 0 0 14 2 8|0 0 24 8 4 2077 0 0 4 8 a0
6|0 5 0 13 2 8|0 1234 8 4 20|73 0 o 3 7 4| N=30
232201201418034358320783404840
i=o |22 017 0 14 2 8|0 55 7 7 4 20[32 32 0 3 7 40
14710 16 23 13 2 8|0 67 0 7 3 20|0 23 0 4 B 40
|=1£002513180540842002403740
| =2 [0 0 % 14 2 8|0 3 0 7 3 2000 2 0 4 7 4|y
< >
c in=18
UE 1 UE 2 UE 3
ABCDE|ABCDE|ABCDE
Output =0l o 241 2034 0 3432 310 0 21 14 2]

i=1 49 0 32 8 5|0 43 0 9 3|43 32 0 14 1
i=2 0 0 45 14 2|0 45 0 7 3|0 23 0 3 8|¢m=1
X

< >
c out=15

Figure 5.2: Traffic Classification & Sliding Window Approach

UE1 WebGRTC | WebGRTC | Web@RTC |NGIMX i = - NGINX
SIP :
UE2 - 5P o RS | = | WebGRTC | web&RTC
313 _ 3
UE3 = T |[$) = || WebQRTC | WebQRTC NGiNX NGinNX
X X | X
0 25 50 75 100 125 150
® >
time (sec)

Figure 5.3: Users’ Network Traffic Baseline Scenarios depicting network traffic at a specific

time interval during the day.

video streaming platforms, whereas another one is constantly on calls with clients. Thus,
the AI/ML unit captures this pattern and enhances users’ overall experience by sharing the
network resources on demand. As a first step towards emulating this office behavior, we
create some baseline traffic scenarios for every UE in our network (one bash script per UE
specifying a particular behavior) as shown in Fig. 5.3. These scenarios are based on real
network patterns observed at a specific time interval during the day (early morning from

10:00 AM to 11:00 AM) on users in our office facilities in Volos, Greece. However, we

5.3.2 Application-aware AI/ML Unit 111

redesign them to be small with a duration of approx. 150-160 seconds to facilitate the whole
experimental procedure on the testbed. This way, we create the basic pattern that is observed
in our office at that specific time interval. However, this is not the exact behavior every day
since it will slightly change from one day to the other even if the underlying pattern is the
same. For example, the employee who works mainly on the phone will not make the same
number of calls or calls of the same duration every day, but he/she will mainly work on the
phone with clients. To emulate these slight variations in the UE behaviors from day to day,
we employ data augmentation techniques. Specifically, based on the baseline scenarios, we
add Additive White Gaussian Noise (AWGN) in the number, sequence, starting time, and
duration of the utilized applications by a UE to represent the differences from one day to the
other. For instance, the UE 3 in Fig 5.3 uses the WebRTC app one time starting at 50 secs for
a duration of 50 secs. It also uses the NGINX app three times in total each starting at about
20, 45, and 100 secs for a duration of 10, 5, and 50 secs respectively. At first, AWGN from
the standard normal distribution with a mean of 0 and a standard deviation (sd) of 1 is added
to the number of times that an app is used. Regarding UE 3, this means that the number of
times that the WebRTC and NGINX are utilized will either not change or increase/decrease
up to a maximum of 3 times (3 standard deviations from the mean). Then according to the
new numbers we add the new apps or delete the unnecessary ones randomly. Subsequently,
we use the same distribution to choose randomly several apps (up to three) and change their
position in the timeline. Then, AWGN from a different distribution (mean of 0, sd of 10) is
added to change the starting time of each app up to a maximum of 30 secs (3 sd from mean).
After that, AWGN from the same distribution is inserted to change the duration of each app
increasing or decreasing it by a margin (up to 30 secs - 3 sd from mean). At every step, we

adjust accordingly the position of the apps in order to avoid interference.

Moreover, several scenarios are reversed to augment the dataset further and a lot of them
are slightly cropped for efficient training. Further but minor noise is inserted when we collect
the data from the testbed due to hardware imperfections. Thus, we create a plethora of net-
work traffic scenarios for every UE that inherit the baseline pattern but are slightly modified
capturing a large spectrum of the office’s real traffic at that specific time interval. Hence,
there is a large variance to build robust AI methods, capable of generalizing, not over-fitting,

and being resilient to noise and fluctuations.

112 Chapter 5. Service Aware Network Slicing for 6G Networks

Attenuation Scenario

3507
T 40}
_§30—
8 o0 |
g 10t
< o!

0 100 200 300 400 500 600
Time (per 0.25 sec)

Figure 5.4: Attenuation Scenario emulating UE mobility in office.

UE Mobility Emulation

In a real network, the quality of the UE connection varies according to the geographical
location of the UE. Specifically, in areas with good LTE coverage the CQI that depicts the
LTE channel quality, is high, in contrast with areas where there is poor LTE coverage (low
CQI). In order to emulate this behavior in our experiment we use programmable attenuators
installed on the outputs of the USRP, as presented in Fig. 5.1|. Specifically, by modifying the
attenuation of the USRP radios, we can emulate transitions from low to high CQI values and
vice versa. The attenuation is inversely proportional to the CQI (high attenuation causes low
CQI and the opposite). Importantly, we possess attenuation scenarios from real commercial
networks in Volos, Greece. Specifically, these attenuation scenarios emulate cars traveling a
specific city route with velocities that vary from 40 to 60 km /h with the road’s limit being
50 km/h. These car scenarios were used to collect 182500 CQI data from 73 cars capturing
a large spectrum of the route’s traffic. The CQI data are publicly available [123]. We decide
to utilize the same attenuation scenarios to emulate mobility to the office users since it is a
similar problem (users moving in a specific geographical area) and moreover, because it is
a dataset with a large variance that could lead to efficient training and generalization of the
models. Fig. 5.4 depicts an attenuation pattern used, where at the beginning of the experiment
the attenuation is low (high CQI). Following that, the attenuation rises substantially (low

CQI), while at the end of the experiment, the attenuation returns to low levels (high CQI).

Data Collection

To collect a lot of training examples for our model, we execute all the scenarios in the

testbed. In specific, we pick at random one of the traffic scenarios (office users’ pattern) and

5.3.2 Application-aware AI/ML Unit 113

slot | col1 col2 Y1-1_slot = 1.0 20
1 1 2

1 2
g 1 3 X1 = 1 5 Y1-2.slot = | 15 25
4 2 3
5 3 4 Y1-3slot = 20 3.0

Figure 5.5: Example of sliding-window scheme.

one of the attenuation scenarios (mobility pattern) and execute them concurrently. This way,
we assign a different combination of office traffic and mobility patterns to each experiment.
Meanwhile, by employing the traffic classification scheme with a time-slot duration of 1
second, the network traffic is appropriately classified and subsequently stored in the database.
This is done for 300 experiments (each lasts approx 150-160 seconds) creating, as a result, a

massive dataset with 48600 rows and 18 columns. This dataset is also publicly available [[124].

Pre-processing

Before feeding the data into the models, we need to preprocess them appropriately. First,
we normalize the whole dataset adjusting all the columns in one common range between 0
and 1. This way, we avoid scale imbalances strengthening the model’s training efficiency.
Subsequently, Fig. 5.2 illustrates clearly our pre-processing technique. In specific, we utilize
a sliding-window approach which creates a 2D input window (X;) of fixed shape ([/V time
slots, ¢;,, features]) and slides it by one-time slot over the whole dataset to create multiple
samples (+ = 0,7 = 1,7 = 2). Meanwhile, for every X; sample, the algorithm captures a
second 1D output window (y;) with shape [1, c,,; features], which depicts the data that we
want to predict (labels) The data of every 1D window (y;) are located immediately after that
of the 2D window (X;) in the dataset representing the future. Noticeably, the values of each y;
could be that of only one-time slot (the following of the X;) or the mean values of an arbitrary
number of time slots following the X;. For example, we provide a dataset with shape [5,2] in
Fig. .3

Given that we want to pick X; windows with a length of 2-time slots, the first input sample
(X1) would be the first two rows. For the corresponding prediction-output window y; there
are a lot of choices depending on the number of future time slots that we want to predict.

For instance, to predict one future time slot, the y; would be the third row. On the other side,

114 Chapter 5. Service Aware Network Slicing for 6G Networks

to predict multiple future time slots, one efficient solution is to obtain the average values of
their columns. Fig. 5.9 demonstrates examples for predictions of 1, 2, and 3 future time slots:

For the following X, y; samples, we slide by one-time slot and apply the same proce-
dure until we reach the end of the dataset. In our case, as shown in Fig. @, after extensive
experimentation we conclude on calculating X; windows with shape [30,18] and y; vectors
of shape [1,15] predicting the average values of five future time slots. The general rule for
finding the optimal window shapes is that the X; windows should be sufficiently large to
capture the pattern in the near past but small enough to boost model training and avoid the
exploding/vanishing gradient problem when Recurrent Neural Networks (RNNs) are used.
Regarding the number of future time slots for prediction, it is generally good to employ mul-
tiple future time-slots to smooth possible fluctuations, but not too many of them so as to
present an accurate figure of the near future. Using this technique, we structure the data in

X; samples of shape [48566, 30, 18] and y; samples of shape [48566, 15].

Neural Network Models

This work focuses on supervised learning approaches and specifically, on evaluating var-
ious deep learning methods. We focus on neural networks as they are generally more robust
at handling huge datasets and more resilient to noise compared to statistical and tree-based
methods.

Our goal is to design a robust Neural Network (NN) that converges on the pattern fast and
accurately in order to be used for real-time forecasting implementation. Hence, we explore
many different NN structures and finally conclude on some of the most promising ones and
provide their specifications in Table 5.2.

Firstly, we choose an FNN due to its simplicity by just moving the information forward
from the input to the hidden and to the output layers resulting in faster training. Subsequently,
we move to more sophisticated architectures, the RNNs, which employ memory components
and are widely utilized in Time Series Forecasting (TSF). Precisely, LSTM NN are very ro-
bust at dealing with the vanishing/exploding gradients issue using three gates (input, output,
and forget gates) and thus, they often outcompete simpler RNNs. Following that, we extend
the simple LSTM by inserting a Bidirectional layer (Bi-LSTMs). This way, the model ana-
lyzes both the original sequences and their reversed versions, obtaining information from the

past and also the future, usually resulting in enhanced forecasting performance. After that, we

5.3.2 Application-aware AI/ML Unit 115

analyze GRUs NNs, another widely used RNN, that achieves similar predictive performance
with LSTMs. In fact, GRU is equipped with fewer gates (reset and update gates) and hence,
requires fewer training parameters leading to faster training. Then, we build a CNN that is
powerful at efficiently extracting features, dealing with noise, reducing the dimensions, and
calculating non-linear functions in data by employing kernel filters, pooling layers, and fully-
connected layers. Consequently, they often result in more accurate and fast training. Further,
we experiment with a hybrid CNN-LSTM that obtains the best from both worlds by forming
an Encoder-Decoder architecture. In specific, the CNN part implements feature extraction,
noise, and dimensionality reduction and subsequently passes the processed information to the
LSTM, which captures the pattern in data using memory components. This way, the result is

a prominent model with remarkable predictive and training performance.

Table 5.2: Neural Networks Configuration

Model Layers Hidden Layers Epochs
GRU 2 GRU + Dense 25 units per layer 61
LSTM 2 LSTM + Dense 25 units per layer 97
Bi-LSTM 2 Bi-LSTM + Dense 25 units per layer 56
FNN 2 Dense + Output Dense 25 units per layer 568
CNN ConvlD + MaxPoolinglD + | Filters=64, Kernel size=2, 264

Flatten + Dense + Output | Pool size=2, 25 units per

Dense Dense layer

CNN-LSTM || ConvlD + MaxPoolinglD + | Filters=64, Kernel size=3, 24

Flatten + RepeatVector + 2 | Pool size=2, Repeat factor=1,

LSTM + Output Dense 25 units per LSTM layer

116 Chapter 5. Service Aware Network Slicing for 6G Networks

Slicing Allocation Mechanism

The slicing allocation algorithm is designed to provide the network resources on demand
and fairly to maximize the QoE of the UEs. To achieve that we share the available network
resource blocks based on a mathematical formula that consists of many criteria obtained from
the model predictions. Precisely, the type of the application (C'), the total Throughput of the
UE ((5), the CQI (C3), and the Jitter (Cy):

4

Slice(%) = Z (w;C;) + wo, (5.1

i=1
where w1y, ws, w3, wy are the weights of every criterion indicating its importance and wy
is a constant term representing the minimum value of the slice.
Each criterion (C}) is assigned a priority value (0, 1, or 2), signifying low, medium, or

high importance, respectively. For example:

 For UE application (C), WebRTC is given the highest priority (2), followed by SIPp

and Nginx with priorities 1 and 0 correspondingly.

» Throughput (C) is classified as high demand (2) for values above 0.4 Mbps, medium
demand (1) for values between 0.2 and 0.4 Mbps, and minor demand (0) for values

below 0.2 Mbps.

* CQI values (C}) falling between 0 to 9 are high priority (2), 9 to 11 are medium priority
(1), and above 11 are low priority (0).

« Jitter values (C;) of more than 10 ms are crucial (2), 5 to 10 ms are medium priority

(1), and less than 5 ms are low priority (0).

After experimenting with various slice configurations, we determined that in our experi-
mental setup, maintaining a minimum slice value of 8% is crucial to keep a User Equipment
(UE) connected to the network. Any value below this threshold results in UE disconnection,
prompting us to establish 8% as the designated minimum slice value (w). Additionally, we
observed that UEs achieve their optimal performance when allocated a slice of 40%. Beyond
this value, there is no discernible increase in connection efficiency. Consequently, we se-
lected 40% as the maximum slice value. This maximum value is determined when all criteria

in Eq. have the highest priority:

5.3.2 Application-aware AI/ML Unit 117

40=w1 X 24wy X 24+ w3 X24+wyg X248

In our study, we assigned equal importance to each criterion, reflected in identical weight
values for wy, ws, w3, wy, all calculated as 4. Consequently, the slicing equation simplifies

to:

4
Slice(%) =4 C;+8 (5.2)

i=1

Various strategies can be implemented by assigning different weights to individual criteria
based on specific objectives. For instance, prioritizing Ultra-reliable Low Latency Commu-
nications (URLLC) would involve assigning a higher weight to the Jitter criterion (C'y). This
adjustment enhances the slice allocation sensitivity to Jitter, ensuring that more resources are
allocated to UEs experiencing Jitter fluctuations. Alternatively, assigning greater weight to
Throughput (Cs) could strengthen support for Enhanced Mobile Broadband (eMBB), while
an emphasis on the weight of CQI (C'3) would focus on maintaining a stable, high-quality
connection. Similarly, allocating more weight to Application (C) would result in additional
resources based on the application type rather than the quality of the connection.

In our case, we choose an equal weight to all criteria to evaluate the algorithm’s gen-
eral efficiency as a first step. Future works will focus on specific use cases. Table 5.3 ad-
duces examples of the slicing allocation algorithm for further understanding. For instance,
the forecasting regarding the UE 1 indicates that the Nginx app will be utilized with 0.1 Mbps
Throughput, a CQI of 14, and a Jitter of 2 ms. All these values correspond to the lowest prior-
ity (0) of each criterion (C};) and thus, the calculated slice is the lowest, 8%. At UE 2 and 3, all
criteria have medium and maximum priority leading to a slice of 24% and 40% respectively.

When the total slices of the UEs are calculated more than 100%, we subtract an equal pro-
portion of every slice. Overall, the UE receives the appropriate amount of resources depend-
ing on the network conditions without under or over-provisioning. In general, this scheme
could be adapted to individual preferences. First, further criteria could be added or some of
them could be excluded. Secondly, the weights could be adjusted on the individual prefer-
ences to target specific use cases. Additionally, the minimum and maximum values of the
UE slice could be modified. Finally, this Eq. is a linear relationship between the criteria and
the slice, and thus in the future, it could be replaced by a non-linear function calculated by

an ML model.

118 Chapter 5. Service Aware Network Slicing for 6G Networks

Forecasting UE1 | UE2 UE 3
Application Nginx | SIPp | WebRTC
Throughput (Mbps) 0.1 0.3 2
cor 14 10 6
Jitter (ms) 2 8 12
Criterion UE1 | UE2 UE 3
4 0 1 2
Cy 0 1 2
Cs 0 1 2
Cy 0 1 2
Slice(%) 8 24 40

Table 5.3: Examples of UE slices assigning the priorities to each criterion (C};) based on

forecasting.

5.3.3 MLOps AI-ML Unit Architecture

To ensure that our model adjusts to the training data’s gradual drift, we employ an on-
line/distributed training architecture realized by a Kubeflow pipeline. Kubeflow is an open-
source AI/ML toolkit that utilizes the power of Kubernetes to run ML jobs and supports
the entire lifecycle of ML applications. In Kubeflow, a pipeline is a description of an ML
workflow that includes containerized components, each of which represents a single step in
the process. Each element is managed as a microservice, with all the expected declarative
definitions (YAML manifests). This, enables them to be quickly deployed and scaled out as
required. By employing Kubeflow [44] pipelines we can easily orchestrate, scale, and auto-
mate our Al solution. This MLOps - Distributed Architecture is presented in Fig. 5.6. First,
CRAF monitors all the traffic from the SGi interface by utilizing PyShark [[125]. In order
for CRAF to collect the traffic in real-time, we use the LiveCapture class of PyShark. CRAF
also obtains all the CQI values in real-time, via HTTP requests from the FlexRAN controller.
Then, after applying network filters to the traffic (IPs/Ports), it classifies the interactions per
UE and application and calculates traffic analytics such us Throughput and Jitter. To avoid
big data over time, CRAF only keeps the summary of each packet such as the UE, the Ap-
plication, the Length, the Jitter, and the CQI value that each UE experiences. Subsequently,

this data is stored on a database running on a MySQL server that is backed with NFS per-

5.3.3 MLOps AI-ML Unit Architecture 119

sistent storage via PersistentVolume, providing consistency and availability of data between
Kubernetes Nodes. Next, the Kubeflow pipeline takes place, as the first step: the Data Parser
extracts the features from the database and creates a new dataset. Then, the next pipeline com-
ponent, the Data Preprocessing applies the sliding window approach to the data and stores
them in a multi-dimensional array. Afterward, this newly shaped array is passed to the last
step of the pipeline, the Training component. The construction, and the training of the model,
are implemented in this final step. After the train finishes the new model is saved on the NFS
as an HDFS5 file via the mounted Persistent Volume that is attached to the container. This way,
the Predictor Service can obtain and utilize the updated model as it has access to distributed
storage as well. As a result, the Predictor pod can make live predictions for near future traffic
with higher accuracy, as the model is trained with the data with the most recent interactions
and the latest network conditions.

To calculate the overhead of our solution we rely on the Eq. 5.3. It is the total time that
is needed per slice allocation. All the metrics are measured with the help of timeit python
module. The first metric, tc g A, is the total time for CRAF to obtain traffic and RAN analytics
in one iteration. We measured that top4p is almost real-time: 1-6 ms. The time needed for
slice allocation t,,,, is also in the same real-time range. This seems reasonable since CRAF
employs PyShark for live packet capturing and FlexRAN for RAN statistics, which operates
in real-time. Also, the overhead of each prediction (¢,,.4) is 1.6 ms. Finally, the catalytic
factor of Eq. plays the time slot per X; observation described by t,;. We choose to observe
X, every 1 sec to get a better picture and capture the patterns. However, the time slot is a
hyperparameter that can be changed. The smaller it becomes, the faster the slice allocations,

with the only tradeoff being the efficiency of the predictions.

Slicetim@ = torar + tsior + tpred + tapply (53)

The pipeline can be triggered by the Predictor Service periodically with a timer or each
time the predicted data is less accurate than a predefined threshold. This can indicate that
the new data that is fitted into the model has different traffic patterns than the data that the
model has been trained with. In that case, an algorithm 3 is suggested. As long as the accuracy
(R-squared) of the forecasts is high, the slice decisions defined by the slicing Eq. can be
determined by the predictions. Otherwise, if the accuracy is lower than the accuracy threshold,

then the slice decisions will be reactively determined by the slicing Eq. directly. The tradeoff

120 Chapter 5. Service Aware Network Slicing for 6G Networks

in this approach is the fact that in the middle of the train of the updated model, we might lose
some important interactions of the users with the applications as well as the new patterns
of the network conditions (e.g. low CQI values). However, based on our experiments this
algorithm can converge on new traffic patterns over time as the accuracy remains at constant-

high percentages from one point onwards.

Algorithm 3: Online Training and Prediction

Function model select predict():

train_flag < 0

while 7rue do

traf fic_data < get _traffic datal()

accuracy <— get accuracy of predictions()

if accuracy > accuracy threshold and train_flag == 0 then
yhat «+ predict(traf fic_data)

store predictions(yhat)

slice_perc <— slice decision(yhat)

else if accuracy < accuracy threshold and train_flag == 0 then
slice_perc <— slice decision(traf fic_data)

trigger training pipeline()

train_flag < 1

end

else if train_flag == 1 then

slice_perc <— slice decision(traffic_data)

if pipeline status() == complete then
train_flag < 0

end

end

end
End Function

Towards aiming to reduce training time as much as possible and to distribute the training

load evenly in the Kubernetes cluster, we enrich our architecture by employing Distributed

5.3.3 MLOps AI-ML Unit Architecture 121

Predictor Service

O

~

Post | Traffic *« Obtain New Model

Slice | Summary e
.

FlexRAN SPGW-U
NF § Persistent
© @ &=

Storing New Model

E—' Parser |—)-|Data Prepl—)-lTrainingl
i J

cal Traffic : Kubeflow
r PVC
Values | Summary : Kubeflow Pipeline
@ Storing Data @F‘VC
CRAF MySQL Server

Figure 5.6: MLOps Training Architecture.

training using Kubeflow’s TensorFlow operator. With the TensorFlow operator, we can run
distributed TensorFlow jobs (TF jobs) in our Kubernetes cluster as illustrated in Fig. 5.7. A

distributed TF job is the collection of the following processes:

 Chief: Is responsible for orchestrating the training process

» PS: Parameter Servers provide a distributed data storage for the model parameters and

perform gradient updates.

» Worker: The workers do the actual work of training the model.

Kubeflow handles the above processes by passing the Kubernetes cluster configuration
as an environment variable to the TF jobs. We only define distributed strategies into our code
for synchronous training based on the all-reduce algorithm or for asynchronous training via
parameter server. In our experiments, we choose Multi-Worker with All-Reduce strategy and
RING communication as it supports synchronous training, without suffering from bottleneck
communications, contrary to the parameter server asynchronous training [126]. The distribu-
tion scheme can be further extended by describing the training job with a custom YAML file
that references the TFJob Custom Resource Definition (CRD). In this way, we can scale our
training process into multiple pods that will train the model in a distributed fashion taking

advantage of the total resources of the cluster.

122 Chapter 5. Service Aware Network Slicing for 6G Networks

Kubernetes Cluster

MNode 1 Training Pods Node 2 Training Pods Node N Training Pods
L]0 L1100 L1000

GPU 1 GPU 2 GPUMN

A
e
Kubeflow

Y
TensorFlow Operator I @ " r'\ I
l TensorFlow Job l

Figure 5.7: Distributed Training

5.4 Evaluation

5.4.1 Model Comparison

The models’ offline training and evaluation are taking place on Google Colab where non-
subscription TPUs are used. The concluded/optimal model structures are analyzed in Table
5.2. To evaluate them, we employ Time-Series Cross Validation (CV), a technique similar to
K-fold CV but designed to respect the time sequence. We split the pre-processed data (48566
X, y; samples) into several folds of equal size (500 samples) and create two sets; the training
and the testing one. At first, we initialize the training set with multiple serial folds following
the timeline (32000 samples - data of about 200 experiments). On every iteration (z), the
model is trained on the training set and uses the next fold on the timeline as a testing set to
calculate the generalization error on unseen data. In the following iteration, the training set is
increased by one fold following the timeline, and the next one is used for a new evaluation.
In the end, the mean of all testing errors (data from about. 100 experiments) is calculated as
the overall generalization error. As a second step, we pick each model and integrate it into
our experimental topology to evaluate its predictive performance in realistic circumstances
on our Testbed. The time-series CV and Testbed’s experimental evaluations are shown in Fig.
B8

As evaluation metrics, we employ the Mean Absolute Error (MAE) and the Coefficient
of Determination (12?). MAE finds the mean absolute error between the predictions (3;) and
the labels. It is scale-dependent helping us understand the forecasting error when studied
together with the data range and distribution. We calculate separate MAE values for the pre-
dicted UE-App Throughput, UE Jitter, and UE CQI both for the Time-Series CV and the

Testbed’s experimental evaluation, as shown in Fig. 5.8. Regarding Throughput, we observe

5.4.1 Model Comparison 123

a range of 0-800 kilobits per second (Kbps) with poor slicing and a range of 0-4 megabits per
second (Mbps) with maximum slicing when the utilized application is the WebRTC. On the
other hand, when Nginx and SIPp are used, the range is between 0-300 Kbps. Generally, the
observed Throughput range in our experiments is between 0-4 Mbps. Regarding lJitter, the
observed range is between 0-70 milliseconds (ms) depending on the link quality, slice, and
application. Moreover, CQI ranges from 0 to 15. Further, we employ the R? metric, which
calculates the proportion of total variation of outcomes explained by the model. It is more
intuitively informative (percentage value) without the need to consider the data ranges.

In Fig. 5.§ all the models identify the pattern in data efficiently. In specific, in Fig. the
models have time-series CV Throughput MAE values that range from 5.04 to 5.82 kbps, while
the respective ones on the Testbed range from 2.07 to 3 kbps. These error values are negligible
when compared with the throughput range, which is 0-4 Mbps. Additionally, the NNs predict
accurately the experimental Jitters (Fig. 5.8p]) reaching MAE values at just around 0.25 ms;
very minor when studied with the Jitter range of [0-70 ms]. Moreover, regarding the CQI
in 5.8y}, the models achieve exceptionally low testing error with an average of 0.42 MAE
considering that CQI ranges from 0 to 15. Moreover, the evaluation utilizing the R? metric on
the time-series CV and on the experiments on the Testbed are shown in Table 5.4. Overall, the
NN achieve substantial performances, with each model being slightly better in forecasting
different features. Importantly, there is a great discrepancy in their training time, as shown in
Fig. 5.85]. The CNN-LSTM identifies quickly the patterns requiring only 4 minutes, while
the remaining models demand from 26 to 76 minutes. The key enabler of CNN-LSTM’s
training efficiency is its convolutional (CNN) part. In specific, the CNN performs optimally
feature extraction, noise, and dimensionality reduction. As a result, the LSTM part finds
smaller and better-structured sequences being able to converge on the patterns in a faster
way. Thus, we pick this algorithm and integrate it into the AI/ML unit as it combines high
predictive accuracy with extremely low training time, being the most appropriate choice for

our implementation.

Table 5.4: R? Evaluation of the Neural Networks

FNN | LSTM | Bi-LSTM | GRU | CNN | CNN-LSTM
Time-series CV R? || 0.936 | 0.940 0.940 0.937 | 0.945 0.940
Experiment R? 0.985 | 0.986 0.987 0.986 | 0.987 0.986

124 Chapter 5. Service Aware Network Slicing for 6G Networks

Time-series CV Experiment Time-series CV s Testing
m g m
Q.
g3 £
3 w
w 5 <
<
s =
T S S 2 2 = T S S 2 = S
£ 6568568 ;% 565856856
~ ¥ 2\/ ~ 3 g/
@ @
5 3
(o) Throughput MAE per Model (B') Jitter MAE per Model
Time-series CV Experiment 2 70
1 E 60
w J8 2 %
< %®] F 30
= 04 >
0.2] £ 20
0 £ 18
T S S P = =S =
< KK @ 2 K S S S P2 s S
© % % ¢ © 2 g 5 & & 5 &
& < v g Pl
S S
(y") CQI MAE per Model (&) Training on Google Colab

Figure 5.8: Model Oft-line Training Evaluation on Google Colab and Experimental Evalua-

tion on Testbed.

5.4.2 Experiment Evaluation

Our real-world experiment on NITOS Testbed evaluates the impact of the AI/ML unit
using the CNN-LSTM model on the QoE of the UEs. In Fig. 5.9-5.11, we include five dif-
ferent sub-figures for every UE. In specific, the first two subplots (a, b) depict the utilized
services, followed by the experienced lJitter (c), then the CQI (d) and subsequently the al-
located slices (e) that were provided according to the dynamic slicing allocation algorithm.
Noticeably, we compare the resulted QoE of the UEs between the guidance of the Al-unit
and the default network configuration. As a ’default” configuration, we set all the UE’s slices
to an equal percentage of 8% during the whole experiment. This is done in an effort to show
the results of poor resource management by a fair resource allocation algorithm that provides
fixed and equal resources to every UE. Noticeably, a slice of 8% is the minimum that keeps a
UE connected to the network in our topology. Moreover, it suffices for the light applications,
namely the NGINX and SIPp, on maintaining a high-quality connection. However, the most
resource-intensive application, WebRTC, suffers from a lack of resources with a slice of that
value. On the other side, a fair algorithm that assigns a slice of 33% to every UE (maximum
possible by the default configuration) provides enough resources to all apps but leads to a

massive over-provisioning. In specific, it wastes huge amounts of resources for the NGINX

5.4.2 Experiment Evaluation 125

and SIPp that could be used to enhance the QoE of the other UEs. Thus, our target is to utilize
the Al unit to dynamically and efficiently allocate the slices avoiding over-provisioning to

NGINX and SIPp and under-provisioning to the WebRTC.

To begin, the subplots and illustrate the apps used by UE 1. At first, UE 1
interacts with WebRTC until approx. 80 secs, when the Nginx is used in two bursts (70-
90 and 120-150 secs). Moreover, the Jitter experienced with the default network slicing is
higher initially and gradually decreases, while the CQI fluctuates around low values (6-10)
almost during the whole experiment. Noticeably, the algorithm provides the slices on demand
by increasing the resource blocks at the maximum of 40% in the first part of the experiment
(until 80 seconds), where the demand is clearly higher; the UE interacts with the WebRTC, the
Jitter is high and the CQI is poor. Subsequently, the demand declines as the UE 1 switches to
the Nginx, the Jitter values decrease and the CQI rises until it plateaus to around 13, at the end
of the experiment. Therefore, the slicing percentage gradually decreases until it plunges at the
minimum of 8%, after around 140 seconds. This slicing management contributes positively to
the QoE of UE 1. Specifically, by comparing the network performance of the default slicing
algorithm with the Al-unit’s, we can see that the Throughput increased reaching even 1 Mbps
with the Al-unit when it used to have around 0.2 Mbps as shown in Fig. 5.90]. In Fig. 5.9p],
we do not observe any changes since the Nginx is not demanding and it has already reached
its peak with the default slicing. Finally, the Jitter falls to lower levels at approx. 10 ms with

the guidance of the Al-unit from the 30 ms that it used to be.

Regarding UE 2 (Fig. 5.10), we see the opposite behavior. In particular, at first UE 2 inter-
acts with the SIPp until approx. 100 seconds, when it switches to the WebRTC. Moreover, the
Jitter remains constant during the whole experiment at 15 ms, as shown in Fig. 5.10y], while
the CQI seems to slightly fall at 10-12 values (5.105]). Noticeably, the algorithms provide a
low percentage of resource block at first until around 80 secs, where the demand is relatively
low since the quality of the connection is quite good (CQI and Jitter) and the utilized service,
the SIPp, is of medium priority. Later, the provided resources are moderately increased to an
average of 28% due to the usage of the WebRTC. Importantly, they do not reach higher lev-
els as the link quality is still quite good. Consequently, the QoE of the UE 2 is substantially
peaked. Particularly, the WebRTC reaches 4 Mbps Throughput with the Al-unit when it used

to reach only a negligible amount of 0.5 Mbps with the default configuration.

Regarding UE 3, the WebRTC is used in the middle part of the experiment, from 50 to

126 Chapter 5. Service Aware Network Slicing for 6G Networks

approx. 100 secs. Additionally, the Nginx is used majorly in the second part at around 100
secs. The Jitter values are relatively low at an average of 5 ms given that the CQI is extremely
high (15) almost during the whole experiment, except for the last 30 secs when it slightly
declines to around 11. For these reasons, we observe that the slicing allocation mechanism
provides few resources during the first part (no more than 16%) until approx. 70 secs, when
the WebRTC Throughput is substantially increased demanding more resources. Then, the
algorithm raises the resources to 28% and subsequently drops them to 12% at around 100
secs since the WebRTC is not used anymore. Following that, the slicing scheme gradually
increases the resources of the UE 3 until they reach a climax of 36% between approx. 130 to
140 secs in an effort to cope with the drop in the link quality (which is at the lowest level).
Generally, the Al-unit assists in the advancement of the QoE since the WebRTC Throughput
is increased from 0.5 to 4 Mbps and the Jitter drops from 10 to 5 ms during the second part
of the experiment.

Overall, the QoE of all UEs is clearly enhanced given that the Throughput and Jitter

performances are ameliorated. Moreover, the slices are provided in a sophisticated way so as

to avoid over- and underprovisioning. In fact, this is illustrated in Fig. 5.9¢], 5.10¢], 5.11¢].

The red line depicts a value of 33%, which would be the highest slice that could be allocated
by a UE with a fixed and fair slicing algorithm. Importantly, our dynamic scheme is able to
surpass this limit when the demand for resources is extremely large as well as to decrease the
resources dramatically lower than this percentage when the connection quality is excellent

giving, this way, the chance for link improvement to other UEs in the network.

5.4.3 Online - Distributed Training

To evaluate the MLOps architecture, we run scenarios with new traffic patterns. In spe-
cific, we slightly altered the noise distributions in the augmentation steps (sect. 5.3.2)) for
the new scenarios. In the steps where the standard normal distribution was utilized, we re-
placed it with an AWGN with a mean of 0 and sd of 1.5. Moreover, we replaced the AWGN
with a mean of 0 and an sd of 10 with a new distribution of the same mean but an sd of 15.
Thus, we represent a small change in the distribution of the traffic pattern since the baseline
patterns still exist in the new scenarios. We noticed that as soon as the new traffic patterns
arrived, the predictions deviated quite a bit and the accuracy dropped immediately below the

predefined threshold (70%) as shown in Fig. 5.12. Then, the Kubeflow Pipeline was trig-

5.4.3 Online - Distributed Training 127

Al-unit default

Al-unit default Al-unit default

Throughput (Mbps)
oO=MNWwaH

o

20 40 60 80 100 120 140 160

Time (sec)

Throughput (Mbps)
o=NwH
Throughput (Mbps)
oO=NWwH

0 20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
Time (sec) Time (sec)

o

(«/) UE 1 interaction with We- (¢/) UE 2 interaction with We- (c/) UE 3 interaction with We-

bRTC service bRTC service bRTC service

Al-unit default

default Al-unit default Al-unit

eooo

omivwh
o000
[SERISXXES
eooo
omNvws

Throughput (Mbps)
Throughput (Mbps)
Throughput (Mbps)

0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Time (sec) Time (sec) Time (sec)

(B") UE 1 interaction with Nginx (B’) UE 2 interaction with SIPp (B) UE 3 interaction with Nginx

Service S€rvice SErvice
default Al-unit default Al-unit default Al-unit
—~ 40 = 40 — 40
g 30 g 30 g 30
T 2 T 20 = 20
2 10 £ 10 2 10
- 0 - 0 - 0
0 20 40 60 80 100 120 140 160 0O 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
Time (sec) Time (sec) Time (sec)

(Y") UE 1 experienced Jitter (v") UE 2 experienced Jitter (v") UE 3 experienced Jitter

16

6 RS Y. Y m L l
12 ~ 12
5 " vawﬁ] 35 Ml LA, Y : w

e}
o
: 0 0
0 20 40 60 80 100 120 140 160 0 20 40 60 8 100 120 140 160 0 20 40 60 80 100 120 140 160
Time (sec) Time (sec) Time (sec)
(5/) UE 1 experienced CQI (8") UE 2 experienced CQI (8") UE 3 experienced CQI

Mk
20 "
A 2 il \mmnmwwu
AR . A
0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160

Time (sec) Time (sec)

f i il

20 40 60 80 100 120 140 160

Time (sec)

5

Resource blocks (%)
Resource blocks (%)

Resource blocks (%)

(¢/) UE 1 allocated slices. The (¢/) UE 2 allocated slices. Red (¢/) UE 3 allocated slices. The

red line indicates a fair sharing line indicates a fair sharing red line indicates a fair sharing

scheme with 33% of resources. scheme with 33% of resources. scheme with 33% of resources.

Figure 5.9: UE 1 QoF with and Figure 5.10: UE 2 QoE with Figure 5.11: UE 3 QoE with
without the AI unit equipped and without the AI wunit and without the Al unit

with CNN-LSTM. equipped with CNN-LSTM. equipped with CNN-LSTM.

gered and started the process of distributed training. In between, the slicing decisions were
defined reactively. After the training was over, the updated model started to make predic-
tions again with high accuracy. Noticeably, it converged quite fast with approximately only
20 new samples-scenarios (50 minutes of receiving new samples and updating the model in

real-time). It is fast since 300 samples were used for the offline training. Overall, the ability

128 Chapter 5. Service Aware Network Slicing for 6G Networks

Pretrained Model Retrained Model

3 60
©
2 30
@
C 0
0 20 40 60 80 100

Time (min)

Figure 5.12: Error before & after online training. The red horizontal line indicates the error

threshold.

of the scheme to cope with the new patterns relies on many components. First, the differences
between the new pattern distribution with the one that the model has converged previously.
The bigger the difference the larger the number of new samples required. Further, the pro-
cessing power of the infrastructure is vital. For instance, Graphics Processing Units (GPUs)

and TPUs outperform CPUs substantially accelerating the updating.

To evaluate our distributed training architecture we scale our cluster up to six NITOS
nodes that carry octa-core processors (Intel-Core 17-3770 at 3.40 GHz Processor). Observing
Fig. 5.13al, the increase in performance is almost linear as the training time seems to con-
verge at 6 CPUs succeeding in reducing training time by half. This optimization of training
time enables us to train the model as quickly as possible and to be able to cope more ac-
curately with the predictions of the most recent data of traffic and network conditions. It is
worth noting that the training data were taken from a sample of the entire dataset: 20 sce-
narios with 18 columns-features. The distributed training is applied to our cluster (NITOS
Testbed) where only CPUs are used and the purpose of this experiment was to show how
beneficial it is to use all resources simultaneously in the case of online training. The CNN-
LSTM model was employed for the experiment. Performance can be further enhanced by
utilizing a GPU cluster. In addition, load balancing is ensured in our cluster as illustrated in
5.13B]. In this experiment, we compared the CPU usage for the training of the model between
a single machine-container and distributed 3 pods - 3 nodes synchronous all-reduce training.
We notice that the single pod has almost 4 times CPU usage compared to the distributed pods
which consume resources evenly in the cluster. These measurements were taken from the

Prometheus adapter, which we integrated into the cluster for resource monitoring.

5.5 Limitations and Discussions 129

g Single-train Node-2
Z) . Node-1 —— Node-3
S & 3
S S 24 /
a 3 16 / \
o) / \
£ 8 / _—
< >
© [) 1 H |
= 1 2 3 4 5 6 o 0 2 4 6 8 10 12
Nodes - CPUs Time (min)
(o) Dist. Training Duration (B) Dist. CPU Usage

Figure 5.13: Experimental results for Distributed Training

5.5 Limitations and Discussions

While our results add valuable insights to the evolving domain of slicing in cloud-native
5G Networks, it’s important to recognize the limitations of our infrastructure. The constraint
on the number of UEs, capped at three, was a practical consideration due to the challenges
associated with establishing connections in our real telecommunications network setup. The
setup operates as a private 5G network where the application usage is more static, meaning
the variety of applications that the users interact with, is relatively fixed. This may not fully
represent the dynamic nature of application usage in public 5G networks, where applications
with different network requirements may be in use simultaneously. To address this, extensive
datasets that capture a wide range of user behaviors, application interactions, and network pat-
terns are essential. These datasets will serve as the foundation for training machine learning
models and refining the slice allocation algorithm to handle the intricacies of dynamic appli-
cation usage in public 5G networks. Also, by increasing the scale of the experimental setup
by connecting a larger number of end devices is crucial to emulate the complexities of public
networks. This expansion allows for a more comprehensive evaluation of the slice allocation
mechanism’s performance in diverse and dynamic scenarios. Nevertheless, the service-aware
slice allocation mechanism provides an end-to-end solution that can be directly plugged into
any type of telecommunication network, regardless of the operator. From a performance per-
spective, there can be limitations concerning the real-time packet inspection and classifica-
tion, as the overall cell throughput is increased. Such limitations can be easily overcome,
when employing data-plane traffic accelerators in the network, for bypassing the operating
system stack and providing direct access to the network. Implementations of libraries such as
DPDK, enhanced Berkeley Packet Filters (¢eBPF) or employing a Vector Packet Processing

(VPP) methodology in the packet handling can offer significant gains in performance, espe-

130 Chapter 5. Service Aware Network Slicing for 6G Networks

cially in the cases where the overall network traffic reaching the UPF surpasses 1Gbps. The
aforementioned limitations provide avenues for future work, including extending the experi-
mentation to larger-scale setups, exploring the performance of the slice allocation mechanism
in public 5G networks with dynamic application usage, and investigating solutions to handle

multiple UEs.

5.6 Conclusion

In this chapter, we developed and experimentally evaluated an ML-driven approach for
defining the optimal slice application in the cellular 5G network, based on the applications
that are hosted on top. Our framework can autonomously decide on the allocations, based on
the ML-driven classification of the traffic and the mobility of users, providing near-real-time
performance. The selection of the ML model was determined after experimenting with several
neural network-based approaches, with the one performing optimally being a CNN-LSTM
stacked model for our data. The solution is able to analyze and classify traffic from differ-
ent applications correctly. At the same time, it considers the user’s connection quality, and
appropriately enforces the slices in the network. In the future, we foresee wrapping parts of
our contribution into xApps and porting our solution to the O-RAN architecture. The detailed
implementation instructions and code repository can be accessed on GitHub: GitHub.I. Ad-

ditionally, partial datasets and code configurations for the framework are provided in [124].

'For specifics on the experimental setup, refer to: https://github.com/teo-tsou/app aware

59

https://github.com/teo-tsou/app_aware_5g
https://github.com/teo-tsou/app_aware_5g
https://github.com/teo-tsou/app_aware_5g

Chapter 6

Al-Driven Attack Mitigation using
Slicing for 6G Networks

6.1 Introduction

The advent of the 5th generation of mobile networks marks a transformative era in telecom-
munications unlocking countless opportunities for developing cutting-edge applications. How-
ever, a notable challenge persists in the absence of dynamic mechanisms for resource shar-
ing among end users. This deficiency blocks the achievement of Key Performance Indicators
(KPIs), often falling short due to under-provisioning. Furthermore, the deficiency in network
optimization results in energy wastage, characterized by over-provisioning.

Additionally, network security is emerging as a critical concern, particularly with the in-
creasing sophistication of network intrusion methods. Malicious attacks violate data integrity
and privacy and significantly impact network performance. A network attack such as Denial
of Service (DoS) can cause 5G core network functions such as the User Plane Function (UPF)
to fail and even cause the Radio Access Network (RAN) to malfunction [127]. The effects
of these security threats extend beyond networking failures. They introduce inefficiencies
in the use of resources, increase operating costs, and require recovery efforts. Furthermore,
monolithic-closed telecommunications infrastructures often lack the adaptive mechanisms to
dynamically manage these threats, leading to vulnerabilities.

An effective strategy for optimizing resources and improving network performance in-
volves classifying users and the traffic they generate. By identifying and classifying traffic

patterns, more efficient resource allocation is possible, ensuring that legitimate users receive

131

132 Chapter 6. AI-Driven Attack Mitigation using Slicing for 6G Networks

the necessary bandwidth while mitigating the impact of malicious activities. The OpenRAN
(O-RAN) architecture [|128] offers a fertile ground for such strategies, as it exposes the RAN
functionalities by controlling them through Radio Intelligent Controllers (RIC) via open inter-
faces. O-RAN’s architecture enables a strategic logic guiding network optimizations through
a three-step process: infer, decide, and determine. By integrating AI/ML, we can infer the
network’s current state and take the appropriate actions in real-time. This allows us to an-
alyze past network behaviors, make informed decisions, and determine the most effective
actions to optimize resource allocation and enhance security.

In this chapter, we adopt this three-step process by proposing an end-to-end 5G innova-
tive framework that leverages AI/ML techniques to classify network traffic in real-time and
dynamically adjust resource allocation and user management within the O-RAN architecture.
Specifically, we developed an intrusion detection xApp that utilizes AI/ML models, trained
on real-world datasets, to classify user traffic and make appropriate slicing and user manage-
ment decisions on Radio Resource Control (RRC) level within the network. Our framework
is a real-world solution, developed and tested on OAI [38] using standardized O-RAN inter-
faces and Service Models (SM). The ultimate goal of our solution is to suppress the network

attacks and to maintain and even enhance the user experience during such incidents.

6.2 Related Work

The development of Network Intrusion Detection Systems (NIDS) has been studied ex-
tensively, with a significant focus on integrating AI/ML techniques to improve detection
accuracy. A comprehensive survey in [129] underlines the importance of integrating ma-
chine learning algorithms into network anomaly detection systems, providing an in-depth
review of Supervised Learning (SL) and Reinforcement Learning (RL) models. In [[130],
the authors proposed a Deep Learning-based (DL) self-adaptive architecture for anomaly
detection, demonstrating the system’s capability to handle fluctuating network traffic and
achieve efficient anomaly detection performance. Similarly, [131] achieved high accuracy
scores by converting network flows into images for analysis by a Convolutional Neural Net-
work (CNN). Furthermore, Federated Learning (FL) architectures have been introduced to
NIDS for cloud-native 5G Networks [|132], showcasing the benefits of distributed learning

in maintaining data privacy. Many works also focused explicitly on DoS attacks by propos-

6.2 Related Work 133

ing DL strategies and architectures for O-RAN 5G networks [[133] [134] [[135]. These studies
highlight the importance of AI/ML in identifying and suppressing such attacks, although they
often rely on simulated environments that may not reflect real-world complexities. Towards
integrating these models into actual 5G and O-RAN networks, [[136] designed an early detec-
tion system for DoS attacks using a custom RIC in srsRAN []137], yet it lacked mechanisms
for subsequent network actions post-classification. A more holistic approach is presented
in [[138], where attacks are classified with high accuracy over the air using OSC-RIC [|[139]

in an LTE testbed, and countermeasures are deployed to maintain low latency.

Regarding inference and resource allocation in O-RAN networks, [140] proposed an
RL-based slicing framework to reduce Service Level Agreements (SLA) violations, eval-
uated within the OpenRAN Gym [[141]. Similarly, a DL-based service-aware slicing scheme
in [[142] demonstrated high user experience and QoS within the OAI platform. The FlexS-
lice framework introduced in [[105] involves redesigning the MAC scheduler for multi-level
resource allocation, showing significant improvements in dynamic RAN slicing. Moreover,
[143] presented an end-to-end O-RAN control loop for radio resource allocation in SDR-
based 5G networks, focusing on real-time adaptability and resource efficiency through Al-
driven xApps. In [[144], authors leveraged RL for enabling 5G Dynamic Time Division Du-
plexing (TDD) within the O-RAN framework, achieving reduced latency.

Although these studies present advanced solutions for NIDS and RAN control/slicing,
they do not integrate both anomaly detection and dynamic resource allocation in real-world
environments. Existing works either focus on anomaly detection without subsequent network
actions to mitigate detected anomalies or implement RAN control/slicing without considering
real-time anomaly detection. Moreover, most NIDS solutions are based on simulations or
assume the availability of full features during testing, which may not reflect the constraints

of real-world systems.

In this chapter, we address this gap by designing, implementing, and evaluating a real-
time network intrusion detection xApp within the O-RAN framework. Our solution combines
real-time anomaly detection, dynamic resource allocation, and user management in a real-
world setup. Specifically, our xApp employs AI/ML models trained on real-world datasets
to classify network traffic and dynamically adjust resource allocation and user management.
It identifies malicious users and triggers RRC connection release to mitigate their impact on

the network, while prioritizing legitimate users through end-to-end slicing. By integrating

134 Chapter 6. AI-Driven Attack Mitigation using Slicing for 6G Networks

our solution into the OAI platform and leveraging standardized O-RAN interfaces and Ser-
vice Models (SM) from FlexRIC, we demonstrate a practical implementation that enhances
network security and efficiency.

Our overall setup is illustrated in Fig. 6.1] and consists of an end-to-end O-RAN 5G Net-
work based on OAI and FlexRIC. The target facility used for the development, application,
and evaluation of the Al-driven NID O-RAN 5G network is the NITOS testbed, which is part
of SLICES-RI [[145]. The deployment specifications are summarized in Table [6.1]. Below
we outline the main components of the solution that enable the continuous classification of
traffic and the subsequent slicing and user connectivity management that seamlessly enables
high QoE to the end-users. A video demonstration of the experiment setup is provided in the
following linkl, while the experiment can be reproduced, by following the instructions and

deploying the code available in Github B,

D " AMF]—[AUSF — SMF — UDR]—{ UDM |

N4 Ve —
~.,
UE1 - Attacker i(’\ N3 “UPF (EXTERNAL {-
—] f DN 3
A 02 e
[==
s =

Network Intrusion J(app
Anomaly Traffic Detector

Figure 6.1: Experimental Setup: End-to-End Deployment of the AI-Driven Network Intrusion

Detection 5G Network.

6.2.1 General Architecture and Management of the network functions

Starting from the Core Network functions, we relied on OAI’s implementation and de-
ployed them as microservices utilizing Docker containers. These functions include the basic
5G core components such as AMF, AUSF, SMF, UDR, UDM, and multiple UPFs with the
different Single Network Slice Selection Assistance Information (S-NSSAI) values config-
ured. An S-NSSAI configuration contains a Slice Service type (SST) and Slice Differentiator

(SD). This enables a full end-to-end slicing as a UE may access multiple slices over the same

'Video demonstration available: https://youtu.be/4hxImAvhXMY
2Link to reproducing the experimental setup: https://github.com/teo-tsou/oai-anomaly

—detection

https://youtu.be/4hx1mAvhXMY
https://youtu.be/4hx1mAvhXMY
https://github.com/teo-tsou/oai-anomaly-detection
https://youtu.be/4hx1mAvhXMY
https://github.com/teo-tsou/oai-anomaly-detection
https://github.com/teo-tsou/oai-anomaly-detection

6.2.1 General Architecture and Management of the network functions 135

Table 6.1: Experimental Setup

System Description

CpPU Intel(R) Core(TM) 17-14700 @
2.101 GHz

Cores 20

GPU NVIDIA GeForce RTX 4070

RAM 32GB

Operating System Ubuntu 22.04.2 LTS
5G-Core Network OAI v2.0.1
5G-RAN/E2-AGENT | OAI v2.0.0

O-RAN RIC FlexRIC dev
O-RAN SM RC v01.03
5G-UE 0OAI v2.0.0

Packet Manipulator Scapy
Dataset KDDCUP’99 [146]

ML Library TensorFlow

gNB. Each slice may serve a particular service type with an agreed SLA. Since the user traf-
fic is passing through the GTP tunnels in the UPFs, the UPF is a critical point for classifying
malicious user behaviors and identifying the user demands. 3GPP underlined the importance
of the core traffic by standardizing the Network Data Analytics Function (NWDAF) function
which mines the core data statistics and analyzes them. Considering that there is no integra-
tion of NWDAF on the O-RAN standardized architecture, we propose that NWDAF could
be placed on the non-RT RIC and parse the user data through the O1 interface as the core net-
work functions could be deployed on a Service Management and Orchestration framework.
Subsequently, the NWDAF can enforce policies and send useful traffic summaries via the
A1 interface to the RT RIC controller, which can then apply policies to the RAN through an
xApp.

Since there is not yet an open implementation of the NWDAF functionality, we imple-
mented our custom solution, the Anomaly Traffic Detector (ATD). This network function

analyzes the traffic on the UPFs by leveraging a packet manipulator which in our case is

136 Chapter 6. AI-Driven Attack Mitigation using Slicing for 6G Networks

Scapy [[147]. In our scheme, the ATD plays the role of the NWDAF. We also employ the RT
RIC from FlexRIC. We utilize FlexRIC since it has the least overhead compared to most RIC
implementations [40] and because it is O-RAN-compliant providing an E2 agent, nearRT-
RIC, and an xApp SDK framework. Therefore, our E2-Agent is OAI’s gNodeB, and the xApp
is an application we developed utilizing FlexRIC’s SDK to infer the RAN Functionalities of
E2-Agent utilizing mainly the RC SM.

6.2.2 Dataset and Machine Learning

The ATD network function, beyond analyzing the user data on the UPF side, it incorpo-
rates an intelligent mechanism to classify malicious and normal traffic, by utilizing an ML
model that is part of its architecture.

This ML model was trained on a real-world dataset KDDCUP’99 which is the most
widely used data set for the evaluation of network intrusion systems [[146]. The dataset con-
tains a substantial number of instances, with over 4 million for training and around 311,029
for testing. The dataset includes a huge variety of features related to the basic network connec-
tion characteristics such as packet header information and advanced features such as content-
related information. We selected five important features: the protocol type which defines the
protocol used in the connection (TCP, SCTP, UDP), the service that is running in the des-
tination network such as HTTP, FTP, or SSH, the flag which establishes the status of the
connection such as normal (SF), rejected (REJ), or reset (RST), and finally the source and
destination bytes. These features were chosen for their relevance in distinguishing between
normal and malicious traffic and their compatibility with real-time analysis through Scapy,
which extracts information only at the packet level. Furthermore, the dataset contains 4 attack
labels: Probing Attack, Remote to Local Attack, Denial of Service Attack, and User to Root

Attack. Our preprocessing steps are described below:

* Label Conversion: Converting multi-class labels into binary labels: 1 for any attack, 0

for normal.

* Flag Conversion: Converting the dataset’s flag values to a format compatible with

Scapy.

* Feature Selection: Selecting the Scapy-related/relevant features.

6.2.3 Anomaly Detection and Countermeasures 137

* Encoding and Scaling: To standardize the data we use OneHotEncoder for categorical

features and MinMaxScaler for numerical features.

After preprocessing, we trained and excessively evaluated several AI/ML learning models
using the TensorFlow implementation, including Random Forest, One-Class SVM, Local
Outlier Factor, KNN, and Autoencoders. The comparison of the models led us to employ the
Random Forest model due to its better performance compared to the other models in terms

of accuracy and training/inference times.

6.2.3 Anomaly Detection and Countermeasures

The detailed operation of our framework is illustrated in Fig. 6.2. The ATD unit utiliz-
ing Scapy, continuously monitors UPF traffic and classifies clients based on their IP and
S-NSSAI values. It manipulates each packet in real-time, extracting the necessary features
that our ML model was trained on. After collecting the first N packets, the ATD preprocesses
these features and feeds them into the Random Forest classifier. Then the Random Forest
by applying a sliding window mechanism processes N=30 packets at a time, classifying the
traffic as benign or malicious. The reason we selected 30 packets-window is to reduce in-
fer/prediction times as close to real-time and avoid false outliers in the classification with a
larger input range. Finally, the ATD sends the anomaly percentage per UE to the xApp for
the RAN Control and countermeasures.

The functionality of the xApp is summarized in Algorithm J. First, it connects to FlexRIC’s
RT RIC and subscribes to the RC SM offered by the E2 Agent. Then accepts incoming socket
connections from ATD clients and initializes the necessary data structures for UE identifica-
tion. In the main loop, it listens for ATD messages, and for each message, it extracts the UE
ID, the S-NSSALI values, and the anomaly ratio per UE and updates the UE-related data struc-
tures. Then it determines the physical RB allocation based on the anomaly ratios it receives
per UE, with the formula given by Eqn. .1. To avoid the total RB allocation exceeding 100%,
it scales down proportionally the allocation through Eqn. and [6.3. Finally, when a UE’s
anomaly ratio reaches 100%, the xApp classifies it as an attacker and triggers an RRC UE
Connection release, causing the UE to disconnect from the network. Subsequently, the xApp

reassigns the PRB allocation to the remaining UEs, ensuring efficient resource distribution.

PRB; = (1 — AnomalyRatio;) - 100 (6.1)

138 Chapter 6. AI-Driven Attack Mitigation using Slicing for 6G Networks

100
ScalingFactor = ———— 6.2
CAMERactor = T talPRB 6.2)
AdjustedPRB, = PRB; - ScalingFactor (6.3)

Algorithm 4: xApp Functionality
Initialization:

Connect to RT-RIC and subscribe to the RC SM.

Set up socket and accept connections from ATD clients.
Initialize ue data structure with default values.

while 7rue do
Receive and Process Messages:

Listen for incoming messages from ATD clients.

Parse messages to extract UE ID, S-NSSAI, and anomaly ratios.
Update ue data structure.

Traffic Analysis and Classification:

Determine PRB allocations based on anomaly ratios.

Resource Allocation and Enforcement:

if a UE is an attacker (100% anomaly ratio) then
Set PRB allocation to 0% for the attacker.

Distribute remaining PRB among other UEs.
Trigger RRC release for the attacker UE.

else
Adjust PRB allocations to ensure total does not exceed 100%.

Apply slicing changes to enforce PRB allocations.

end

end

6.3 Experimental Evaluation

To evaluate our solution, we first compared the performance of the ML models. Then,

we tested the efficiency of our solution in both the preservation and enhancement of network

6.3 Experimental Evaluation 139

Anomaly Detection Server Malicious Traffic
-a-a
g

>

Extract Faatures

Traffic on UPF

Random Forest Maodel
prorocol_type -2
senvice L thj
g _”ﬁf
src_bytes =~
dsi_byres

Packet Classified To Send Anomaly %

L

B
b Manipulation per UE

XApp

RAN

Normal Traffic

Figure 6.2: Detailed Architecture of the AI-Driven Network Intrusion Detection System.

performance and user experience during different anomaly scenarios, including DoS attacks.

We measured the ML model’s performance using three metrics: accuracy, ROC AUC,
and F1 scores. Accuracy measures the classified instances among all cases, calculated using
Eqn. @, where TP stands for True Positives, TN for True Negatives, F'P for False Positives,
and FN for False Negatives. ROC AUC distinguishes between classes by plotting the true
positive rate (TPR) against the false positive rate (FPR). It is calculated by Eqn. 6.5. The F1
Score is the harmonic mean of precision and recall. It is calculated by Eqn. 6.6, where Pre-
cision is 775 and Recall is 751 . We can observe from Fig. 6.3 that the Random Forest
model had the best performance with high accuracy, ROC AUC, and F1 scores, making it the
most reliable for our NIDS. The autoencoder also had similar performance but required more
computational resources. Additionally, we measured the training and inference times for the
different models, as shown in Table 6.2. The inference times correspond to the 30-packet win-
dow predictions. The Local Outlier Factor model achieved the shortest times for both training
(0.77 sec) and inference (0.6 ms). However, due to its lack of accuracy, we explored the Ran-
dom Forest model, which had a low training time (4.36 sec) and inference time (3.4 ms),
making it suitable for our real-time system. On the other hand, the Autoencoder and KNN
models had significantly longer training and inference times, which may limit their practi-
cal applicability in dynamic network environments such as ours. With these observations,
we focused on the Random Forest Model due to its balanced performance and efficiency.
Fig. 6.4 presents the confusion matrix for the Random Forest model, where 89.46% of be-
nign traffic and 80.37% of attack traffic were correctly classified during testbed integration.
These percentages, although lower compared to some literature, demonstrate the efficacy of
our classifier under the constraints of real-world system integration. The limited feature set
used, which is compatible with real-time analysis through Scapy, affects the overall accuracy.

Despite these limitations, our framework achieves relatively high accuracy.

140 Chapter 6. AI-Driven Attack Mitigation using Slicing for 6G Networks

Model Accuracy, ROC AUC, and F1 Score Comparison

o 9 I Accuracy
T mE ROC AUC Score
=3 F1 Score

Figure 6.3: Model Training Evaluation: Accu-

racy, ROC AUC, and F1 Score Comparison.

Confusion Matrix with Percentages

-50

True Labels

40
Attack- 19.63 30

-20

Normal Attack
Predicted Labels

Figure 6.4: Confusion Matrix for the Random

Forest Model.
TP+ TN
A _ 6.4
WY = TP ITN + FP+ FN 6.4)
1
ROC AUC = / TPR(FPR) - d(FPR) (6.5)
0

Precision - Recall
F1S =2. 6.6
core Precision + Recall (6.6)

To evaluate our solution under realistic conditions, we designed several traffic scenarios
in our testbed connecting two UEs. In the initial scenario illustrated in Fig. .3, in the be-
ginning, both UEs share roughly the same throughput since they slice equal amounts of RBs
and both generate normal traffic. At the marked point with a red dotted line, UE1 begins to

6.3 Experimental Evaluation 141

Model Train Time (s) | Infer Time (ms)
Random Forest 4.36 34
One-Class SVM 125.98 6.14

Local Outlier Factor 0.77 0.6
KNN 5.51 9.14
Autoencoder 181.46 23.11

Table 6.2: Training and inference times for various machine learning models

send some malicious packets into the network, generated via Scapy using the test (unseen)
part of the KDDCUP’99 dataset. Due to the absence of any NID mechanisms in this scenario,
both UEs continue to share the same network resources even after the introduction of mali-
cious traffic, leading to a noticeable degradation in performance for the normal user, UE2. In
the subsequent scenario in Fig. 6.6, we introduce our NID solution alongside the XxApp. As
soon as the malicious packets are inserted into the network, our system successfully classifies
them as abnormal and relocates the RBs based on the anomaly percentage per UEs for every
sliding window of 30 packets. Consequently, the QoE for the legitimate UE (UE2) improves
significantly as it gets the most RBs, while the QoE for the suspicious UE (UE1) declines.

Scenario 1: Anomaly Detection - w/o Defence Scenario 2: Anomaly Detection - w/ Defence
055 —— UEL1 (Attacker) =70
i " A m J\\ —— UE2 (Normal User) iGO //\/ \/\/\—/‘\/\/\/
é SO VAY VS Event Start é WA
ﬁ 45 \)QW b Xﬂ ﬁ 0 A X‘T/ —— UE1 (Attacker)
;40 \ K) ;40 \ —— UE2 (Normal User)
2, S I R O 1 R T e Event Start
NN * | 5
9] 320
= 30 N =
= ARV v v & 10 U/ /\/\/\ / \u/\v
.
"0 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds)
Figure 6.5: Anomaly Traffic w/o Defence. Figure 6.6: Anomaly Traffic w/ Defence.

Figure 6.7: Anomaly Traffic w/ and w/o Defence; red line denotes when the anomaly traffic

was generated.

The third scenario demonstrated in Fig. 6.8 explores the network’s vulnerability to a DoS
attack, executed from UE1 using Hping3, without any defensive actions. During this attack,
both UEs experience a dramatic drop in throughput to nearly zero. This illustrates the im-

pact of the DoS attack across the 5G network without any defensive mechanism. In the final

142 Chapter 6. AI-Driven Attack Mitigation using Slicing for 6G Networks

Scenario 3: DoS Attack - w/o Defence Scenario 4: DoS Attack - w/ Defence
60 o o~
= —— UE1 (Attacker) = T
Z 50 A /X\/‘ - —— U2 (Normal User) F 80 ‘/V
.‘7:2 40 \/ \// ””” Event Start é A ’
= ' = 60 —— UE1 (Attacker)
=
:;30 :; W \"1\’ —— UE2 (Normal User)
2. 9 \ 2. 40 W ””” Event Start
=20 =
c_vp \ c_vp
S 10 g2
E \owovwmiﬂ\ = \
0 10 20 30 40 50 0 10 20 30 40 50
Time (seconds) Time (seconds)
Figure 6.8: DoS Attack w/o Defence. Figure 6.9: DoS Attack w/ Defence.

Figure 6.10: DoS Attack w/ and w/o Defence; red line denotes when the attack started.

scenario (see Fig. 6.9), we evaluate the resilience of our system to the same Do$ attack, but
this time with our defensive solution activated. Our system identified the DoS attack since
the anomaly percentage of the 30-packet sliding window reached a 100% threshold. Then the
xApp triggers an RRC connection release specifically for UE1. This isolates the attacking UE
and prevents it from further degrading network performance. UE2 experiences minimal dis-
ruption, although its throughput almost doubled and remained largely stable, illustrating the
system’s effectiveness in detecting and actively preventing sustained network attacks. This

ensures that normal network users maintain QoE even under attack conditions.

Furthermore, we measured the impact of the DoS attack on normal user latency. Specif-
ically, we measured the Round Trip Time (RTT) for UE2 under attack conditions, both with
and without our defense mechanisms, as illustrated in Fig. b.11]. The results indicate a signif-
icant rise in RTT during the attack, with latency peaking at nearly 3 sec without our NIDS.
When our xApp is running, the RTT remains substantially lower, maintaining an average
latency of approximately 18 ms. That indicates that our framework successfully suppressed

the attack and kept the user’s latency at a low level.

Finally, our solution demonstrates significant energy efficiency improvements. As de-
picted in Fig. .12, we monitored the CPU usage within the UPF docker container during
a DoS attack, both with and without our NIDS solution. With our defense mechanism, we
observed an average reduction of up to 15% in CPU usage, reversing the failure of UPF and

enhancing energy savings.

6.4 Conclusion 143

UPF's CPU Utilization During DoS Attack w/wo Defence
End-User’s RT'T Under DoS Attack w/wo Defence 80— w/o Defence

70 w/ Defence
/\ A/ ---- Attack Start

2 o) 5601 - w/o Defence Avg: 17.69%
T s /\/ \ / ————— w/ Defence Avg: 2.11%
1500 i
© 40
A
1000 f oooed H :
N Wl i
500 v V a 20 ¥ V V/\\j L/ \/\\ /\/\\/\\\

) 10 20 30 40 50 0 =
Time (seconds)

50

ion (\%

/
~_
tio

Latency (ms)
tiliz

CPU

0 10 20 30 40
Time (seconds)

Figure 6.11: End-User’s RTT Under DoS At-

tack w/wo Defence. Figure 6.12: UPF’s CPU Utilization During

DoS Attack w/wo Defence.

6.4 Conclusion

In this chapter, we have demonstrated an AI/ML-driven framework for Network Intru-
sion Detection and dynamic resource/user management within the O-RAN architecture, fo-
cusing on enhancing network security and optimizing 5G network performance. Our solu-
tion effectively handles anomaly traffic and mitigates intrusion methods such as Denial of
Service (DoS) attacks through real-time traftfic classification and dynamic slicing and RRC
UE connection management, by extending the RC SM in FlexRIC. Through extensive eval-
uation of various AI/ML models, the Random Forest model was selected for its balanced
performance and efficiency. Despite the limitations of our system, which include relying on
available features during packet manipulation that can affect the model’s accuracy, our so-
lution still achieved good accuracy rates. Our experimental results highlight the benefits of
our framework: maintaining low latency under attack conditions, nearly doubling through-
put for legitimate users, and reducing CPU usage by up to 15%. In the future, we foresee
extending our solution by dynamically managing/relocating edge computing resources (e.g.
Multiple Access Edge Computing services) based on the anomaly detection mechanisms of

our system.

Chapter 7

Conclusions

7.1 Summary of Contributions

This thesis addressed critical research challenges related to the management and operation
of emerging 6G networks, particularly focusing on dynamic resource allocation, mobility-
aware service continuity, and Al-driven network security. Our contributions extend across
four main pillars: Cloud-Native MEC Migration, Deep Reinforcement Learning-driven MEC
Orchestration, Service-Aware Network Slicing with Machine Learning, and AI-Powered In-
trusion Detection and Mitigation within the O-RAN Architecture.

In Chapter 8, we proposed a novel cloud-native Follow-me MEC framework, emphasizing
the concept of placing MEC services within the fronthaul segment of a disaggregated hetero-
geneous base station architecture. This strategic placement significantly reduced end-to-end
latency, a crucial improvement for latency-sensitive 6G services. Leveraging Kubernetes for
management and KubeVirt for integrating Virtual Machines, we successfully demonstrated
seamless and automatic live service migrations triggered by changing network conditions
and UE mobility. The experimental evaluation validated our scheme’s ability to dynamically
switch between radio access technologies and infrastructure nodes without user-perceived
interruptions, thus maintaining stringent service-level agreements even in highly dynamic
scenarios.

Building upon this foundation, Chapter } introduced an advanced mobility-aware edge
infrastructure that leverages artificial intelligence techniques—specifically Deep Reinforce-
ment Learning —to proactively orchestrate MEC services. We implemented a digital-twin

simulation environment mirroring our real-world setup, facilitating the training of DRL agents

145

146 Chapter 7. Conclusions

(DQN and DSQN) without disrupting production environments. The trained agents utilized
multi-cell RTT metrics and edge node workloads to proactively trigger migrations, signif-
icantly improving the system’s responsiveness. Real-world experimental validations con-
firmed that our DQN-based agent efficiently learned complex migration strategies, consis-
tently delivering low latency and uninterrupted high-throughput experiences, outperforming

static migration schemes by considerable margins.

In Chapter[§, we tackled the increasingly relevant challenge of dynamic and service-aware
network slicing. Recognizing the limitations of static slicing approaches, we proposed a so-
phisticated ML-driven solution employing time-series deep learning models. After rigorous
comparative evaluations of several architectures—including CNNs, LSTM networks, GRU s,
and hybrid CNN-LSTM stacks—we identified the CNN-LSTM stacked architecture as su-
perior for our datasets. By accurately predicting user-application interactions and network
conditions (e.g., mobility-driven fluctuations in signal quality), our framework dynamically
adjusted slice configurations in near real-time, significantly improving resource efficiency
and user experience consistency. Additionaly, we provided extensive experimentation on
the model’s lifecycle by designing and developing a distributeed MLOps architecture. De-
tailed performance analyses and open-source release of our experimental codebase further

strengthen the reproducibility and practical applicability of our findings.

In Chapter [, we addressed the critical challenge of security within softwarized and Al-
driven network architectures. Recognizing the vulnerability of 6G networks to increasingly
sophisticated threats such as DoS attacks, we integrated an Al-driven intrusion detection
framework within the O-RAN architecture, specifically utilizing FlexRIC to implement an
adaptive xApp-based intrusion detection and mitigation scheme. We conducted extensive
comparative evaluations across various ML classifiers, ultimately selecting the Random For-
est model for its superior balance of accuracy, computational efficiency, and real-time respon-
siveness. The proposed framework dynamically identified and mitigated network threats, au-
tomatically reallocating network resources and adjusting UE connections. Empirical results
demonstrated the solution’s capability to maintain high QoS under attack scenarios, substan-
tially increasing legitimate user throughput, reducing latency degradation, and decreasing

overall CPU utilization by up to 15%.

Collectively, these contributions represent a significant advancement toward the realiza-

tion of autonomously managed, highly intelligent, and secure 6G networks. Our research di-

7.2 Perspectives for Future Work 147

rectly supports the vision of future networks characterized by native Al integration, extreme
service continuity under mobility, dynamic resource allocation responding to real-time con-

ditions, and robust self-defending mechanisms against security threats.

7.2 Perspectives for Future Work

Building upon the contributions and insights gained through this thesis, there are many
opportunities to explore for future works, addressing open questions and extending the capa-
bilities of the proposed approaches.

In Chapter [, we presented a cloud-native framework for seamless service migration in
MEC both 3GPP and non-3GPP environments leveraging Kubernetes and virtualization tech-
nologies. A natural extension of this work involves exploring unified resource management
and orchestration methods that jointly optimize MEC resource allocation and network slicing
decisions. Integrating a predictive handover decision mechanism synergistically with MEC
migrations, and evaluating these in more heterogeneous and large-scale environments (such
as multi-domain deployments or edge-cloud federations), will further enhance service con-
tinuity and latency management for highly mobile users. Additionally, future research could
explore energy-efficient migration techniques, balancing service performance and sustain-
ability,objectives that are in line with 6G goals.

In Chapter H, we introduced Deep Reinforcement Learning algorithms for proactive,
mobility-aware MEC service migration. An interesting avenue for further investigation would
be employing federated reinforcement learning approaches to address scalability, privacy
concerns, and model generalizability across distributed edge nodes. Moreover, combining
DRL migration decisions with semantic-aware networking strategies—where data relevance
drives migration and network resource prioritization—could enhance user experience in fu-
ture applications. A large-scale deployment in a real-world industrial scenario, for instance
within autonomous vehicles or smart city infrastructures, would also validate the robustness
and adaptability of the proposed approach.

In Chapter [§, we proposed an ML-based, service-aware network slicing MLOps frame-
work utilizing CNN-LSTM architectures. Future work may extend this framework by explor-
ing more advanced and explainable Al architectures, including transformer-based or attention-

driven models, to improve prediction accuracy and interpretability of network slicing deci-

148 Chapter 7. Conclusions

sions. Moreover, incorporating online learning approaches to handle real-time adaptation
to changing user behavior, service demands, and radio conditions could significantly en-
hance the flexibility and efficiency of slicing mechanisms. Finally, standardizing this solu-
tion as a deployable xApp/rApp within O-RAN would support broad adoption and encourage
industry-wide experimentation and validation.

In Chapter [, we developed an Al-driven network intrusion detection and mitigation
framework within the O-RAN context. Future extensions include exploring generative Al
techniques to proactively identify previously unseen cyber threats and rapidly adapt mit-
igation strategies accordingly. Additionally, extending the anomaly detection capabilities
through decentralized and federated learning would enhance the scalability, responsiveness,
and security of large-scale deployments. Another promising research direction involves cou-
pling the detection mechanism with dynamic resource provisioning and edge computing re-
location strategies. Such integration could offer holistic security and resource optimization,
significantly improving the resilience and operational efficiency of 6G network infrastruc-

tures.

7.2.1 Lessons Learned and Outlook

Reflecting on the entirety of this thesis, several key lessons emerge. Firstly, the integration
of cloud-native principles with Al-driven network management has demonstrated powerful
synergies, enabling highly adaptive, scalable, and resilient 6G infrastructures. Secondly, the
importance of end-to-end experimental validation combining both digital twin environments
and real-world trials has proven essential to assess feasibility and performance in practical
deployments. Techniques that work convincingly in theory may face unexpected challenges
when exposed to the complexities, uncertainties, and dynamic conditions of real-world sys-
tems. Thirdly, pursuing explainable and sustainable Al frameworks remains vital to trans-
parency, and environmental responsibility in future networks.

Looking ahead, a major challenge is achieving a truly holistic orchestration framework
capable of seamlessly coordinating mobility, security, slicing, and sustainability objectives
under a unified management plane. The convergence of diverse 6G enablers — from seman-
tic communications to zero-touch automation and beyond — will demand not only advanced
technical solutions but also cross-disciplinary collaboration and standardization efforts. Ad-

dressing these challenges will be pivotal to realizing the vision of fully autonomous, trust-

7.2.1 Lessons Learned and Outlook 149

worthy, and human-centric 6G networks.

References

[1]

[2]

[3]

[4]

[5]

[6]

Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, Thanasis Korakis, Navid
Nikaein, and Serge Fdida. Service-aware real-time slicing for virtualized beyond 5g

networks. Computer Networks, 247:110445, 2024.

Sonia Shahzadi, Muddesar Igbal, Tasos Dagiuklas, and Zia Ul Qayyum. Multi-access
edge computing: open issues, challenges and future perspectives. J. Cloud Comput.,

6(1), December 2017.

Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, and Thanasis Korakis. Ai-
driven service-aware real-time slicing for beyond 5g networks. In /EEE INFOCOM
2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pages 1-6, 2022.

Theodoros Tsourdinis, Nikos Makris, Serge Fdida, and Thanasis Korakis. Drl-based
service migration for mec cloud-native 5g and beyond networks. In 2023 IEEE 9th

International Conference on Network Softwarization (NetSoft), pages 6270, 2023.

Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, and Serge Fdida. Demys-
tifying urllc in real-world 5g networks: An end-to-end experimental evaluation. In
GLOBECOM 2024 - 2024 IEEE Global Communications Conference, pages 2954—
2959, 2024.

Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, and Serge Fdida. Ai-driven
network intrusion detection and resource allocation in real-world o-ran 5g networks.
In Proceedings of the 30th Annual International Conference on Mobile Computing
and Networking, ACM MobiCom ’24, page 1842—1849, New York, NY, USA, 2024.

Association for Computing Machinery.

151

152

References

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Nikos Makris, Virgilios Passas, Apostolos Apostolaras, Theodoros Tsourdinis, Ilias
Chatzistefanidis, and Thanasis Korakis. On enabling remote hands-on computer net-
working education: the nitos testbed approach. In 2023 IEEE Integrated STEM Edu-
cation Conference (ISEC), pages 132—138, 2023.

Sokratis Christakis, Theodoros Tsourdinis, Nikos Makris, Thanasis Korakis, and Serge
Fdida. Evaluation of user plane function implementations in real-world 5g networks.
In IEEE INFOCOM 2024 - IEEE Conference on Computer Communications Work-
shops (INFOCOM WKSHPS), pages 1-6, 2024.

International Telecommunication Union (ITU). Minimum requirements related to
technical performance for IMT-2020 radio interface(s). Technical Report ITU-R
M.2410-0, ITU Radiocommunication Sector (ITU-R), November 2017. Accessed:
2024-03-31.

Khaled B. Letaief, Wei Chen, Yuanming Shi, Jun Zhang, and Ying-Jun Angela Zhang.
The roadmap to 6g: Ai empowered wireless networks. /[EEE Communications Maga-

zine, 57(8):84-90, 2019.

Ericsson. Co-creating a cyber-physical world. Technical Report GFTL-24:000856
Uen, Ericsson, July 2024. Accessed: 2024-03-31.

Li-Hsiang Shen, Kai-Ten Feng, and Lajos Hanzo. Five facets of 6g: Research chal-
lenges and opportunities. ACM Computing Surveys, 55(11):1-39, February 2023.

6G-IA Vision and Societal Challenges Working Group. Sustainability of 6g: Ways
to reduce energy consumption. Technical report, 6G Smart Networks and Services

Industry Association (6G-IA), November 2023. Accessed: 2024-03-31.

Mikko Uusitalo, Patrik Rugeland, Mauro Boldi, Emilio Strinati, Gino Carrozzo, Pana-
giotis Demestichas, Marten Ericson, Gerhard Fettweis, Marie-Helene Hamon, Matti
Latva-aho, Josep Martrat, Aarno Parssinen, Bjorn Richerzhagen, Dario Sabella, Hans
Schotten, Pablo Serrano, Giovanni Stea, Tommy Svensson, S. Soykan, and Yaning

Zou. Hexa-x the european 6g flagship project. 06 2021.

Ltd. Huawei Technologies Co. 6g: The next horizon, n.d. Accessed: 2025-09-29.

References 153

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

5G Infrastructure Association. European Vision for the 6G Network Ecosystem, June

2021.

Wen Wu, Conghao Zhou, Mushu Li, Huaqing Wu, Haibo Zhou, Ning Zhang,
Xuemin Sherman Shen, and Weihua Zhuang. Ai-native network slicing for 6g net-

works. IEEE Wireless Communications, 29(1):96—-103, 2022.

ETSI Industry Specification Group (ISG) Experiential Networked Intelligence (ENI).
Experiential Networked Intelligence (ENI); Transformer Architecture for Policy
Translation. https://www.etsi.org/deliver/etsi gs/ENI/001

099/030/04.01.01 60/gs ENIO30v040101p.pdf, March 2024. ETSI
GS ENI 030 V4.1.1.

3GPP. Study on new radio access technology: Radio access architecture and interfaces.

Technical Report TR 38.801 V14.0.0, 3GPP, March 2017.

Nikos Makris, Pavlos Basaras, Thanasis Korakis, Navid Nikaein, and Leandros Tassi-
ulas. Experimental evaluation of functional splits for 5g cloud-rans. IEEE Conference

Record - International Conference on Communications, 05 2017.

Small Cell Forum. 5G nFAPI Specifications, November 2020. Document number:
SCF225, Release 6.

Daniel Dik and Michael Berger. Open-ran fronthaul transport security architecture and

implementation. /EEE Access, PP:1-1, 01 2023.

Open Networking Foundation. Software-Defined Networking: The New Norm for
Networks. Technical report, ONF, 2012. Available online: https://www.open

networking.org/sdn-resources/sdn-library/whitepapers/.

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. Openflow: Enabling innovation in campus networks. ACM

SIGCOMM, 38(2):69-74, 2008.

O-RAN Alliance. O-RAN Architecture Overview. Technical report, O-RAN Alliance,

2021. Available online: https://www.o-ran.org/specifications.

https://www.etsi.org/deliver/etsi_gs/ENI/001_099/030/04.01.01_60/gs_ENI030v040101p.pdf
https://www.etsi.org/deliver/etsi_gs/ENI/001_099/030/04.01.01_60/gs_ENI030v040101p.pdf
https://www.opennetworking.org/sdn-resources/sdn-library/whitepapers/
https://www.opennetworking.org/sdn-resources/sdn-library/whitepapers/
https://www.o-ran.org/specifications

154

References

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

3rd Generation Partnership Project (3GPP). NG-RAN; Stage 2 functional specification
of User Equipment (UE) positioning in NG-RAN. Technical Report TS 38.305, 3GPP,
2021. Available online: https://www.3gpp.org/ftp/Specs/archive/3
8 series/38.305/.

Ericsson. 5G positioning: What you need to know. Technical report, Ericsson, 2020.
Available online: https://www.ericsson.com/en/blog/2020/12/5g-p

ositioning--what-you-need-to-know.

Andrea Pinto, Giuseppe Santaromita, Claudio Fiandrino, Domenico Giustiniano, and
Flavio Esposito. Characterizing location management function performance in 5g core
networks. In 2022 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), pages 6671, 2022.

ETSI MEC. Multi-Access Edge Computing: Architecture and Principles. Technical
report, ETSI, 2021. Available online: https://www.etsi.org/technolog

ies/multi-access-edge-computing.

Weisong Shi, Jie Cao, Quan Zhang, Youhu Li, and Lanyu Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5):637-646, 2016.

Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and
Dario Sabella. On multi-access edge computing: A survey of the emerging 5g network
edge cloud architecture and orchestration. /[EEE Communications Surveys & Tutorials,

19(3):1657-1681, 2017.

Etsi gs mec. https://www.etsi.org/deliver/etsi gs/MEC/001 099
/026/02.01.01 60/gs MEC026v020101lp.pdf.

Nikos Makris, Virgilios Passas, Thanasis Korakis, and Leandros Tassiulas. Employing

mec in the cloud-ran: An experimental analysis. pages 15-19, 10 2018.

Shangguang Wang, Jinliang Xu, Ning Zhang, and Yujiong Liu. A survey on service
migration in mobile edge computing. /[EEE Access, 6:23511-23528, 2018.

Serge Fdida, Nikos Makris, Thanasis Korakis, Raffacle Bruno, Andrea Passarella,
Panayiotis Andreou, Bartosz Belter, CA©dric Crettaz, Walid Dabbous, Yuri Dem-

https://www.3gpp.org/ftp/Specs/archive/38_series/38.305/
https://www.3gpp.org/ftp/Specs/archive/38_series/38.305/
https://www.ericsson.com/en/blog/2020/12/5g-positioning--what-you-need-to-know
https://www.ericsson.com/en/blog/2020/12/5g-positioning--what-you-need-to-know
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/026/02.01.01_60/gs_MEC026v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/026/02.01.01_60/gs_MEC026v020101p.pdf

References 155

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

chenko, and Raymond Knopp. Slices, a scientific instrument for the networking com-

munity. Computer Communications, 193:189-203, 2022.

Serge Fdida, Timur Friedman, and Sophia MacKeith. Onelab: Developing future inter-
net testbeds. In Elisabetta Di Nitto and Ramin Yahyapour, editors, Towards a Service-

Based Internet, pages 199-200, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Nikos Makris, Christos Zarafetas, Spyros Kechagias, Thanasis Korakis, Ivan Seskar,
and Leandros Tassiulas. Enabling open access to LTE network components; the NI-
TOS testbed paradigm. In Proceedings of the 2015 Ist IEEE Conference on Network
Softwarization (NetSoft), pages 1-6. IEEE, 2015.

Florian Kaltenberger, Guy de Souza, Raymond Knopp, and Hongzhi Wang. The Ope-
nAirlnterface 5G New Radio Implementation: Current Status and Roadmap. In WS4
2019; 23rd International ITG Workshop on Smart Antennas, pages 1-5, 2019.

Robert Schmidt, Chia-Yu Chang, and Navid Nikaein. FlexVRAN: A flexible con-
troller for virtualized RAN over heterogeneous deployments. In /CC 2019-2019 IEEE

International Conference on Communications (ICC), pages 1-7. IEEE, 2019.

Robert Schmidt, Mikel Irazabal, and Navid Nikaein. FlexRIC: an SDK for next-
generation SD-RANS. In Proceedings of the 2021 17th CoNEXT. ACM, 2021.

Docker. https://docs.docker.com/get-started/overview/.

Kubernetes. https://kubernetes.io/docs/concepts/overview/com

ponents/.

KubeVirt: Virtualization extension for Kubernetes. [Online], https://github.c

om/kubevirt/kubevirt.

Dejan Golubovic and Ricardo Rocha. Training and Serving ML workloads with Kube-
flow at CERN. In EPJ Web of Conferences, volume 251, page 02067. EDP Sciences,
2021.

Rubayet Shafin, Lingjia Liu, Vikram Chandrasekhar, Hao Chen, Jeffrey Reed, and
Jianzhong Charlie Zhang. Artificial intelligence-enabled cellular networks: A critical

path to beyond-5G and 6G. IEEE Wireless Communications, 27(2):212-217, 2020.

https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://github.com/kubevirt/kubevirt
https://github.com/kubevirt/kubevirt

156 References

[46] Navid Nikaein, Eryk Schiller, Romain Favraud, Raymond Knopp, Islam Alyafawi,
and Torsten Braun. Towards a Cloud-Native Radio Access Network, pages 171-202.

Springer International Publishing, Cham, 2017.

[47] Osama Arouk and Navid Nikaein. 5G Cloud-Native: Network Management & Au-
tomation. In NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management

Symposium, pages 1-2, 2020.

[48] Sameerkumar Sharma, Raymond Miller, and Andrea Francini. A cloud-native ap-

proach to 5g network slicing. IEEE Communications Magazine, 55(8):120-127,2017.
[49] Kekki S. et al. ETSI White Paper No. 28: MEC in 5G networks, 2018.

[50] A. Reznik et al. ETSI White Paper No. 23: Cloud RAN and MEC: A Perfect Pairing,
2018.

[51] Giust F. et al. ETSI White Paper No. 24: MEC Deployments in 4G and Evolution
Towards 5G, 2018.

[52] Nikos Makris, Virgilios Passas, Thanasis Korakis, and Leandros Tassiulas. Employing

mec in the cloud-ran: An experimental analysis. pages 15-19, 10 2018.

[53] Nikos Makris, Virgilios Passas, Christos Nanis, and Thanasis Korakis. On minimiz-
ing service access latency: Employing mec on the fronthaul of heterogeneous 5g ar-
chitectures. In 2019 IEEE International Symposium on Local and Metropolitan Area
Networks (LANMAN), pages 1-6, 2019.

[54] Abdelkader Aissioui, Adlen Ksentini, Abdelhak Mourad Gueroui, and Tarik Taleb. On
enabling 5G automotive systems using follow me edge-cloud concept. IEEE Trans-

actions on Vehicular Technology, 67(6):5302-5316, 2018.

[55] TungV Doan, Zhongyi Fan, Giang T Nguyen, Hani Salah, Dongho You, and Frank HP
Fitzek. Follow me, if you can: A framework for seamless migration in mobile edge
cloud. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1178-1183. IEEE, 2020.

[56] Tao Ouyang, Zhi Zhou, and Xu Chen. Follow me at the edge: Mobility-aware dynamic
service placement for mobile edge computing. [EEE Journal on Selected Areas in

Communications, 36(10):2333-2345, 2018.

References 157

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Nikos Makris, Christos Zarafetas, Pavlos Basaras, Thanasis Korakis, Navid Nikaein,
and Leandros Tassiulas. Cloud-based convergence of heterogeneous rans in 5g disag-

gregated architectures. 05 2018.

Cong Shen, Cem Tekin, and Mihaela van der Schaar. A non-stochastic learning ap-
proach to energy efficient mobility management. /EEE Journal on Selected Areas in

Communications, 34(12):3854-3868, 2016.

SIPp - a SIP protocol test tool. [Online], https://github.com/SIPp/sipp.

Yaqgiong Liu, Mugen Peng, Guochu Shou, Yudong Chen, and Siyu Chen. Toward
Edge Intelligence: Multiaccess Edge Computing for 5G and Internet of Things. /EEE
Internet of Things Journal, 7(8):6722—6747, 2020.

Wei Lu, Xianyu Meng, and Guanfei Guo. Fast Service Migration Method Based on
Virtual Machine Technology for MEC. [EEE Internet of Things Journal, 6(3):4344—
4354, 2019.

Zhihan Lv and Wenqun Xiu. Interaction of Edge-Cloud Computing Based on SDN
and NFV for Next Generation loT. /IEEE Internet of Things Journal, 7(7):5706-5712,
2020.

Marius Corici, Pousali Chakraborty, and Thomas Magedanz. A Study of 5G Edge-
Central Core Network Split Options. Network, 1(3):354-368, 2021.

Seungyeol Lee, Soohwan Lee, and Myung-Ki Shin. Low Cost MEC Server Placement
and Association in 5G Networks. In 2019 International Conference on Information

and Communication Technology Convergence (ICTC), pages 879-882, 2019.

Mustafa Emara, Miltiades C. Filippou, and Dario Sabella. MEC-Assisted End-to-End
Latency Evaluations for C-V2X Communications. In 2018 European Conference on

Networks and Communications (EuCNC), 2018.

L. Farris, T. Taleb, H. Flinck, and A. Iera. Providing ultra-short latency to user-centric
5G applications at the mobile network edge. Transactions on Emerging Telecommu-

nications Technologies, 29(4):¢3169, 2018. e3169 ett.3169.

https://github.com/SIPp/sipp

158

References

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Shunmugapriya Ramanathan, Koteswararao Kondepu, Miguel Razo, Marco Tacca,
Luca Valcarenghi, and Andrea Fumagalli. Live Migration of Virtual Machine and
Container Based Mobile Core Network Components: A Comprehensive Study. /EEE
Access, 9:105082—-105100, 2021.

Shunmugapriya Ramanathan, Abhishek Bhattacharyya, Koteswararao Kondepu,
Miguel Razo, Marco Tacca, Luca Valcarenghi, and Andrea Fumagalli. Demonstra-
tion of Containerized Central Unit Live Migration in 5G Radio Access Network. In
2022 IEEE 8th International Conference on Network Softwarization (NetSoft), pages
225-227,2022.

Hadeel Abdah, Jodo Paulo Barraca, and Rui L. Aguiar. Handover prediction inte-
grated with service migration in 5g systems. In ICC 2020 - 2020 IEEE International
Conference on Communications (ICC), pages 1-7, 2020.

Marco Pomalo, Van Thanh Le, Nabil El loini, Claus Pahl, and Hamid R. Barzegar.
Service migration in multi-domain cellular networks based on machine learning ap-
proaches. In 2020 7th International Conference on Internet of Things: Systems, Man-
agement and Security (IOTSMS), pages 1-8, 2020.

Amine Abouaomar, Zoubeir Mlika, Abderrahime Filali, Soumaya Cherkaoui, and Ab-
dellatif Kobbane. A deep reinforcement learning approach for service migration in
mec-enabled vehicular networks. In 2021 IEEE 46th Conference on Local Computer
Networks (LCN), pages 273-280, 2021.

Rami Akrem Addad, Diego Leonel Cadette Dutra, Tarik Taleb, and Hannu Flinck.
Al-Based Network-Aware Service Function Chain Migration in 5G and Beyond Net-
works. [EEE Transactions on Network and Service Management, 19(1):472-484,
2022.

CRIU - a utility to checkpoint/restore Linux tasks. [Online], https://criu.org.

Jakob Schrettenbrunner. Migrating Pods in Kubernetes. PhD thesis, 12 2020.

Podmigration-Operator: An operator that supports Pod Migration in K8s. [Online],

https://github.com/SSU-DCN/podmigration-operator.

https://criu.org
https://github.com/SSU-DCN/podmigration-operator

References 159

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

Michael Hines and Kartik Gopalan. Post-copy based live virtual machine migration

using pre-paging and dynamic self-ballooning. pages 51-60, 01 2009.

UERANSIM: 5G UE and RAN (gNodeB) simulator. [Online], https://github

.com/aligungr/UERANSIM.

Michael Gundall, Julius Stegmann, Christopher Huber, and Hans Schotten. Towards
organic 6g networks: Virtualization and live migration of core network functions. 10

2021.

Satyam Dwivedi, Ritesh Shreevastav, Florent Munier, Johannes Nygren, lana Siom-
ina, Yazid Lyazidi, Deep Shrestha, Gustav Lindmark, Per Ernstrém, Erik Stare, Sara M.
Razavi, Siva Muruganathan, Gino Masini, Ake Busin, and Fredrik Gunnarsson. Posi-

tioning in 5g networks, 2021.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

OOKLA 5G MAP™: The interactive Ookla 5G Map tracks 5G rollouts in cities across

the globe. [Online], https://www.speedtest.net/ocokla-5g-map.

Muhammad Tirmazi, Adam Barker, Nan Deng, Md Ehtesam Haque, Zhijing Gene
Qin, Steven Hand, Mor Harchol-Balter, and John Wilkes. Borg: the next generation.
In EuroSys 20, Heraklion, Crete, 2020.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with

double g-learning, 2015.

Zhi xiong Xu, Lei Cao, Xi liang Chen, Chenxi Li, Yongliang Zhang, and Jun Lai. Deep
reinforcement learning with sarsa and qg-learning: A hybrid approach. [EICE Trans.

Inf. Syst., 101-D:2315-2322, 2018.

S Rohith Raj, R Rohith, Minal Moharir, and G Shobha. SCAPY- A powerful interac-
tive packet manipulation program. In 2018 International Conference on Networking,

Embedded and Wireless Systems (ICNEWS), pages 1-5, 2018.

Nei Kato, Bomin Mao, Fengxiao Tang, Yuichi Kawamoto, and Jiajia Liu. Ten Chal-
lenges in Advancing Machine Learning Technologies toward 6G. IEEE Wireless Com-
munications, 27(3):96—-103, 2020.

https://github.com/aligungr/UERANSIM
https://github.com/aligungr/UERANSIM
https://www.speedtest.net/ookla-5g-map

160

References

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Ioannis Tomkos, Dimitrios Klonidis, Evangelos Pikasis, and Sergios Theodoridis. To-
ward the 6G Network Era: Opportunities and Challenges. /T Professional, 22(1):34—
38, 2020.

Chia-Yu Chang, Navid Nikaein, Osama Arouk, Kostas Katsalis, Adlen Ksentini,
Thierry Turletti, and Konstantinos Samdanis. Slice Orchestration for Multi-Service
Disaggregated Ultra-Dense RANs. [IEEE Communications Magazine, 56(8):70-77,
2018.

Chang Ge, Ning Wang, Severin Skillman, Gerry Foster, and Yue Cao. QoE-Driven
DASH Video Caching and Adaptation at 5G Mobile Edge. In ACM Conference on
Information-Centric Networking, ACM-ICN 16, page 237-242, New York, NY, USA,
2016. Association for Computing Machinery.

Rob Smith, Connor Freeberg, Travis Machacek, and Venkatesh Ramaswamy. An
O-RAN Approach to Spectrum Sharing Between Commercial 5G and Government
Satellite Systems. In IEEE Military Communications Conference (MILCOM), pages
739744, 2021.

Line MP Larsen, Aleksandra Checko, and Henrik L Christiansen. A survey of the
functional splits proposed for 5G mobile crosshaul networks. /IEEE Communications

Surveys & Tutorials, 21(1):146-172, 2018.

Andres Garcia-Saavedra and Xavier Costa-Perez. O-RAN: Disrupting the virtualized
RAN ecosystem. /[EEE Communications Standards Magazine, 2021.

Amitava Ghosh, Andreas MAoder, Matthew Baker, and Devaki Chandramouli. 5G
Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Ac-
cess, PP:1-1, 09 2019.

Richard Cziva, Christos Anagnostopoulos, and Dimitrios P Pezaros. Dynamic,
latency-optimal vNF placement at the network edge. In IEEE conference on computer

communications (INFOCOM), pages 693-701. IEEE, 2018.

Zhichao Xu, Xiaoning Zhang, Shui Yu, and Ji Zhang. Energy-Efficient Virtual Net-
work Function Placement in Telecom Networks. In International Conference on Com-

munications (ICC), pages 1-7, 2018.

References 161

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

loannis Sarrigiannis, Kostas Ramantas, Elli Kartsakli, Prodromos-Vasileios Mekikis,
Angelos Antonopoulos, and Christos Verikoukis. Online VNF Lifecycle Management
in an MEC-Enabled 5G IoT Architecture. IEEE Internet of Things Journal, 7(5):4183—
4194, 2020.

Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. Towards load-balanced VNF assign-
ment in geo-distributed NFV Infrastructure. In IEEE/ACM International Symposium
on Quality of Service (IWQoS), pages 1-10, 2017.

Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. Adaptive VNF scaling and flow
routing with proactive demand prediction. In IEEE Conference on Computer Commu-

nications (INFOCOM), pages 486—494. IEEE, 2018.

Dejene Boru Oljira, Karl-Johan Grinnemo, Javid Taheri, and Anna Brunstrom. A
model for QoS-aware VNF placement and provisioning. In /EEE Conference on Net-
work Function Virtualization and Software Defined Networks (NFV-SDN), pages 1-7,
2017.

Long Qu, Chadi Assi, and Khaled Shaban. Delay-Aware Scheduling and Resource
Optimization With Network Function Virtualization. /EEE Transactions on Commu-

nications, 64(9):3746-3758, 2016.

Dinesh Kumar, Somnath Chakrabarti, Ashok Sunder Rajan, and Jim Huang. Scaling
Telecom Core Network Functions in Public Cloud Infrastructure. In /EEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom), pages
9-16. IEEE, 2020.

Imad Alawe, Adlen Ksentini, Yassine Hadjadj-Aoul, and Philippe Bertin. Improving
Traffic Forecasting for 5G Core Network Scalability: A Machine Learning Approach.
IEEE Network, 32(6):42-49, 2018.

Imad Alawe, Yassine Hadjadj-Aoul, Adlen Ksentini, Philippe Bertin, and Davy
Darche. On the scalability of 5G core network: The AMF case. In I[EEE Annual
Consumer Communications Networking Conference (CCNC), pages 1-6, 2018.

ITRI. Athena Orchestrator - O-RAN SMO & RIC, note=[Online], https://even
t.itri.org/CES2023/tech details/22.

https://event.itri.org/CES2023/tech_details/22
https://event.itri.org/CES2023/tech_details/22

162 References

[105] Chieh-Chun Chen, Chia-Yu Chang, and Navid Nikaein. FlexSlice: Flexible and real-
time programmable RAN slicing framework. In GLOBECOM 2023 - 2023 IEEE
Global Communications Conference, pages 3807-3812, 2023.

[106] Jasneet Kaur, M Arif Khan, Mohsin Iftikhar, Muhammad Imran, and Qazi Emad Ul
Haq. Machine Learning techniques for 5G and beyond. IEEE Access, 9:23472-23488,
2021.

[107] Ons Aouedi, Kandaraj Piamrat, Salima Hamma, and J. Perera. Network traffic anal-
ysis using machine learning: an unsupervised approach to understand and slice your

network. annals of telecommunications, 11 2021.

[108] Qiaofeng Qin, Konstantinos Poularakis, Kin K. Leung, and Leandros Tassiulas. Line-
speed and scalable intrusion detection at the network edge via federated learning. In

IFIP Networking Conference (Networking), pages 352-360, 2020.

[109] Jun Zhang, Yang Xiang, Yu Wang, Wanlei Zhou, Yong Xiang, and Yong Guan. Net-
work traffic classification using correlation information. /EEE Transactions on Par-

allel and Distributed Systems, 24(1):104-117, 2013.

[110] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti. Traffic classification using clus-
tering algorithms. In Proceedings of the 2006 SIGCOMM Workshop on Mining Net-
work Data, MineNet ’06, page 281-286, New York, NY, USA, 2006. Association for
Computing Machinery.

[111] Michael Finsterbusch, Chris Richter, Eduardo Rocha, Jean-Alexander Muller, and
Klaus Hanssgen. A survey of payload-based traffic classification approaches. /EEE
Communications Surveys & Tutorials, 16(2):1135-1156, 2014.

[112] Thuy T.T. Nguyen and Grenville Armitage. A survey of techniques for internet traftic
classification using machine learning. [EEE Communications Surveys & Tutorials,

10(4):56-76, 2008.

[113] Shahbaz Rezaei and Xin Liu. Deep learning for encrypted traffic classification: An
overview. IEEE Communications Magazine, 57(5):76-81, 2019.

[114] Alberto Dainotti, Antonio Pescape, and Kimberly C. Claffy. Issues and future direc-
tions in traffic classification. /[EEE Network, 26(1):35-40, 2012.

References 163

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Chunxiao Jiang, Haijun Zhang, Yong Ren, Zhu Han, Kwang-Cheng Chen, and Lajos
Hanzo. Machine Learning paradigms for Next-Generation Wireless Networks. /EEE

Wireless Communications, 24(2):98-105, 2016.

Marcin Dryjanski, Lukasz Kulacz, and Adrian Kliks. Toward Modular and Flexible
Open RAN Implementations in 6G Networks: Traffic Steering Use Case and O-RAN
xApps. Sensors, 21(24), 2021.

Anurag Thantharate, Ankita Vijay Tondwalkar, Cory Beard, and Andres Kwasinski.
Eco6g: Energy and cost analysis for network slicing deployment in beyond 5g net-
works. Sensors, 22(22), 2022.

Bouziane Brik and Adlen Ksentini. On Predicting Service-oriented Network Slices
Performances in 5G: A Federated Learning Approach. In IEEE Conference on Local
Computer Networks (LCN), pages 164—-171. IEEE, 2020.

Chia-Yu Chang and Navid Nikaein. Closing in on 5G control apps: enabling mul-
tiservice programmability in a disaggregated radio access network. [EEE Vehicular

Technology Magazine, 13(4):80-93, 2018.

Qiang Liu, Nakjung Choi, and Tao Han. OnSlicing: Online End-to-End Network
Slicing with Reinforcement Learning. In International Conference on Emerging Net-
working EXperiments and Technologies (CONEXT, CONEXT °21, page 141-153, New
York, NY, USA, 2021. Association for Computing Machinery.

Sharvari Ravindran, Saptarshi Chaudhuri, Jyotsna Bapat, and Debabrata Das. Novel
adaptive multi-user multi-services scheduling to enhance throughput in 5g-advanced
and beyond. [EEE Transactions on Network and Service Management, pages 1-1,
2024.

[122] Nazih Salhab, Rami Langar, and Rana Rahim. 5G network slices resource orchestra-

[123]

tion using Machine Learning techniques. Computer Networks, 188:107829, 2021.

[lias Chatzistefanidis, Nikos Makris, Virgilios Passas, and Thanasis Korakis. UE
Statistics Time-Series (CQI) in LTE Networks, 2022.

164

References

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, and Thanasis Korakis. Ue
network traffic time-series (applications, throughput, latency, cqi) in lte/5g networks,

2022.

Dor Green. Pyshark: Python wrapper for tshark, allowing python packet parsing using

wireshark dissectors. [Online], https://github.com/KimiNewt/pyshark.

Chen Chen, Wei Wang, and Bo Li. Round-Robin Synchronization: Mitigating Com-
munication Bottlenecks in Parameter Servers. In IEEE Conference on Computer Com-

munications (INFOCOM), pages 532-540, 2019.

Raja Ettiane, Abdelaali Chaoub, and Rachid Elkouch. Toward securing the control
plane of 5G mobile networks against DoS threats: Attack scenarios and promising

solutions. Journal of Information Security and Applications, 61:102943, 2021.

Michele Polese, Leonardo Bonati, Salvatore D’Oro, Stefano Basagni, and Tommaso
Melodia. Understanding O-RAN: Architecture, Interfaces, Algorithms, Security, and
Research Challenges, 2022.

Song Wang, Juan Fernando Balarezo Serrano, Kandeepan Sithamparanathan, Akram
Al-Hourani, Karina Gomez Chavez, and Ben Rubinstein. Machine Learning in Net-

work Anomaly Detection: A Survey. IEEE Access, PP:1-1, 11 2021.

Lorenzo Fernandez Maimo, Angel Luis Perales Gomez, Félix J. Garcia Clemente,
Manuel Gil Pérez, and Gregorio Martinez Pérez. A Self-Adaptive Deep Learning-
Based System for Anomaly Detection in 5G Networks. [EEE Access, 6:7700-7712,
2018.

Jordan Lam and Robert Abbas. Machine Learning based Anomaly Detection for 5G
Networks, 2020.

Salah Bin Ruba, Nour El-Houda Yellas, and Stefano Secci. Anomaly Detection for
5G Softwarized Infrastructures with Federated Learning. In 2022 Ist International
Conference on 6G Networking (6GNet), pages 1-4, 2022.

Jung-Erh Chang, Yi-Chen Chiu, Yi-Wei Ma, Zhi-Xiang Li, and Cheng-Long Shao.
Packet Continuity DDoS Attack Detection for Open Fronthaul in ORAN System. In

https://github.com/KimiNewt/pyshark

References 165

[134]

[135]

[136]

[137]

[138]

[139]

[140]

NOMS 2024-2024 IEEE Network Operations and Management Symposium, pages 1—
5,2024.

C.T. Shen, Y.Y. Xiao, Y.W. Ma, J.L. Chen, Cheng-Mou Chiang, S.J. Chen, and Y. C.
Pan. Security Threat Analysis and Treatment Strategy for ORAN. In 2022 24th Inter-

national Conference on Advanced Communication Technology (ICACT), pages 417—
422,2022.

Giorgi lashvili, Maksim lavich, Razvan Bocu, Roman Odarchenko, and Sergiy
Gnatyuk. Intrusion Detection System for 5G with a Focus on DOS/DDOS Attacks.
In 2021 11th IEEE International Conference on Intelligent Data Acquisition and Ad-
vanced Computing Systems. Technology and Applications (IDAACS), volume 2, pages
861-864, 2021.

Bruno Missi Xavier, Merim Dzaferagic, Diarmuid Collins, Giovanni Comarela, Mag-
nos Martinello, and Marco Ruffini. Machine Learning-based Early Attack Detection
Using Open RAN Intelligent Controller, 2023.

Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Serrano,
Cristina Cano, and Doug J. Leith. srsLTE: an open-source platform for LTE evo-
lution and experimentation. In Proceedings of the Tenth ACM International Work-
shop on Wireless Network Testbeds, Experimental Evaluation, and Characterization,
WINTECH ’16, page 25-32, New York, NY, USA, 2016. Association for Computing
Machinery.

Azuka Chiejina, Brian Kim, Kaushik Chowhdury, and Vijay K. Shah. System-level
Analysis of Adversarial Attacks and Defenses on Intelligence in O-RAN based Cellu-
lar Networks, 2024.

F. Bimo, F. Feliana, S. Liao, C. Lin, D. F. Kinsey, J. Li, R. Jana, R. Wright, and
R. Cheng. OSC Community Lab: The Integration Test Bed for O-RAN Software Com-
munity. In 2022 [EEE Future Networks World Forum (FNWF), pages 513-518, Los
Alamitos, CA, USA, oct 2022. IEEE Computer Society.

Raoul Raftopoulos, Salvatore d’oro, Tommaso Melodia, and Giovanni Schembra.

DRL-based Latency-Aware Network Slicing in O-RAN with Time-Varying SLAs. In

166

References

[141]

[142]

[143]

[144]

[145]

[146]

[147]

Proceedings of the International Conference on Communications (ICNC) 2024, 02
2024.

Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and Tommaso
Melodia. OpenRAN Gym: An Open Toolbox for Data Collection and Experimentation
with Al in O-RAN, 2022.

Theodoros Tsourdinis, Ilias Chatzistefanidis, Nikos Makris, Thanasis Korakis, Navid
Nikaein, and Serge Fdida. Service-aware real-time slicing for virtualized beyond 5G

networks. Computer Networks, 247:110445, 2024.

Asheesh Tripathi, Jaswanth S R Mallu, Md. Habibur Rahman, Abida Sultana, Aditya
Sathish, Alexandre Huff, Mayukh Roy Chowdhury, and Aloizio Pereira Da Silva. End-
to-End O-RAN Control-Loop For Radio Resource Allocation in SDR-Based 5G Net-
work. In MILCOM 2023 - 2023 IEEE Military Communications Conference (MIL-
COM), pages 253-254, 2023.

Karim Boutiba, Miloud Bagaa, and Adlen Ksentini. On enabling 5SG Dynamic TDD
by leveraging Deep Reinforcement Learning and O-RAN. In 2023 I[EEE/IFIP NOMS,
2023.

Serge Fdida, Nikos Makris, Thanasis Korakis, Raffaele Bruno, Andrea Passarella,
Panayiotis Andreou, Bartosz Belter, CA©dric Crettaz, Walid Dabbous, Yuri Dem-
chenko, and Raymond Knopp. SLICES, a scientific instrument for the networking

community. Computer Communications, 193:189-203, 2022.

Ibrahim Obeidat, Nabhan Hamadneh, Mouhammd Al-kasassbeh, and Mohammad
Almseidin. Intensive Preprocessing of KDD Cup 99 for Network Intrusion Classi-

fication Using Machine Learning Techniques, 2018.

Rohith Raj S, Rohith R, Minal Moharir, and Shobha G. SCAPY- A powerful interac-
tive packet manipulation program. In 2018 International Conference on Networking,

Embedded and Wireless Systems (ICNEWS), pages 1-5, 2018.

	Abstract
	Περίληψη
	Résumé
	List of Publications
	Table of contents
	List of figures
	List of tables
	Abbreviations
	Introduction
	Evolution towards 6G Networks
	Management and Operation Challenges for 6G Networks
	Thesis Contributions to 6G Management and Operations
	Other Research Contributions (Out of Scope of This Thesis)
	Thesis Structure

	Background
	5G/NR
	Architecture Overview
	RAN Protocol Stack
	RAN Functional Splits
	RAN Resource Allocation/Slicing
	RAN Dupplexing
	Software-Defined RAN
	Key Core Network Functions

	Multiple Access Edge Computing
	Introduction
	Cloud vs Edge
	Placing MEC in Telecom Networks
	MEC Type Deployment - Virtualization Technologies
	Edge Service Live Migration

	Artificial Intelligence and Machine Learning Introduction
	Machine Learning (ML)
	Deep Learning (DL) and Neural Networks
	Reinforcement Learning

	Experimental Tools and Methods
	SLICES RI - Testbeds
	5G Experimentation Tools
	Kubernetes Ecosystem

	Mobility Aware Edge Service Migration for 6G Networks
	Introduction
	Related Work
	System Architecture
	Management and deployment of the network functions
	RAN Functions and MEC
	Follow-me MEC extensions

	Evaluation
	Conclusion

	Deep Reinforcement Learning based Service Migration for 6G Networks
	Introduction
	Related Work
	System Architecture
	Architecture of the Edge Infrastructure
	Management & Deployment of Network Functions
	Architecture of the DRL Migration Environment

	Evaluation
	Conclusion

	Service Aware Network Slicing for 6G Networks
	Introduction
	Related Work
	System Architecture
	Management and deployment of the network functions
	Application-aware AI/ML Unit
	MLOps AI-ML Unit Architecture

	Evaluation
	Model Comparison
	Experiment Evaluation
	Online - Distributed Training

	Limitations and Discussions
	Conclusion

	AI-Driven Attack Mitigation using Slicing for 6G Networks
	Introduction
	Related Work
	General Architecture and Management of the network functions
	Dataset and Machine Learning
	Anomaly Detection and Countermeasures

	Experimental Evaluation
	Conclusion

	Conclusions
	Summary of Contributions
	Perspectives for Future Work
	Lessons Learned and Outlook

	References

