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Definition. A nn×  matrix ][ ija=A  is called row diagonally dominant if 
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Lemma 1. If ][ ija=A  is a nn×  row (resp., column) diagonally dominant matrix 

with positive diagonal elements, and ][ id=D , ][ ic=C  are nn×  positive and 

nonnegative diagonal matrices respectively (i.e. 0>id  and 0≥ic , ni ,,1K= ), then 

the matrix DACB +=  (resp., ADCB += ) is row (resp., column) diagonally 

dominant with positive diagonal elements. 

 

Proof. It is easily observed that, for a diagonal matrix D, the ijth element of the matrix 

product DA equals ijiad  (i.e. the effect of pre-multiplying a matrix A by a diagonal 

matrix D is simply to multiply each element of the ith row of A by the ith diagonal 



element of D). Similarly, the ijth element of the product AD equals ijj ad  (i.e. the 

effect of post-multiplying a matrix A by a diagonal matrix D is to multiply each 

element of the jth column of A by the jth diagonal element of D). Now, if A is row 

diagonally dominant with positive diagonal elements, then for the matrix DACB +=  

it holds 0>+= iiiiii adcb  ( ni ,,1K= ) and also: 
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i.e. B is row diagonally dominant with positive diagonal elements. 

If A is column diagonally dominant with positive diagonal elements, then for the 

matrix ADCB +=  it holds 0>+= jjjjjj adcb  ( nj ,,1K= ) and also: 
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i.e. B is column diagonally dominant with positive diagonal elements.  Q.E.D. 

 

 

Lemma 2. If ][ ija=A  is a nn×  matrix with positive diagonal elements which 

satisfies 1max
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AIB −=  is row (resp., column) diagonally dominant with positive diagonal 

elements. 
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i.e. AIB −=  is row diagonally dominant with positive diagonal elements. 

Likewise, if 1max
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i.e. AIB −=  is column diagonally dominant with positive diagonal elements. 

Q.E.D. 

 

 

Theorem 1. If ][ ija=A  is a nn×  row diagonally dominant matrix with positive 

diagonal elements then 
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Proof. For every induced matrix norm it is: 
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(provided, of course, that A is nonsingular). Now, if A is row diagonally dominant 

with positive diagonal elements (in which case 1−A  always exists [1]), then in order 

to show that 
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Similarly, if A is column diagonally dominant with positive diagonal elements we 

need to show that 0min
11
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Theorem 2. Let ][ ija=A  be a nn×  – row or column – diagonally dominant matrix 

with positive diagonal elements. If λ  is an eigenvalue of A then 0Re >λ . 

 

Proof. This is an immediate consequence of the Gershgorin circle theorem [1], by 

which every eigenvalue kλ , nk ,...,1=  of a square matrix A is located in one of the n 

disks in the complex plane defined by 
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is row diagonally dominant with positive diagonal elements, then all Gershgorin disks 

lie entirely in the positive real semi-plane and thus all eigenvalues of A have positive 

real parts, i.e. 0Re >kλ , nk ,...,1=∀ . Since the Gershgorin circle theorem can be 

restated for the set of disks 
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and because A, TA  have the same eigenvalues [2]), it holds again 0Re >kλ , 

nk ,...,1=∀  for the case where A is column diagonally dominant with positive 

diagonal elements. 

There is an alternative way of proving the theorem. Suppose, to derive a 

contradiction, that there exists an eigenvalue λ  of A which has 0Re ≤λ . Then, if A 

is row diagonally dominant with positive diagonal elements it would be 

( ) ( ) ∑
≠
=

>>++=−
n

ij
j

ijiiiiii aaaa
1

22 ImRe λλλ , which means that the matrix 

AI −λ  is also row diagonally dominant (generally, with complex diagonal elements). 

However such a matrix is always nonsingular [1], i.e. 0)det( ≠− AIλ , which 

contradicts our initial hypothesis that λ  is an eigenvalue of A (a similar proof can be 

derived for the case of A being column diagonally dominant with positive diagonal 

elements).  Q.E.D. 

 

 

Theorem 3. If ][ ija=A  is a nn×  – row or column – diagonally dominant matrix 

with positive diagonal elements then 1−A  has only positive diagonal elements. 

 

Proof. Let ][1
ijα=−A . For the diagonal elements iiα  of 1−A  it holds: 
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where iiA  is the (principal) submatrix of A obtained by striking out the ith row and 

the ith column. If A is – row or column – diagonally dominant with positive diagonal 

elements, then so is every principal submatrix iiA , ni ,...,1= , as is easily verified. 

Thus, by Theorem 2 all eigenvalues of A as well as of any principal submatrix iiA , 
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Theorem 4. If ][ ija=A  is a nn×  row (resp., column) diagonally dominant matrix 

with positive diagonal elements then the matrix 1)( −+− AII  
111 )()( −−− +=+= IAAAI  is also row (resp., column) diagonally dominant with 

positive diagonal elements. 

 

Proof. If A is row diagonally dominant with positive diagonal elements then clearly 

the same holds for AI + . This implies that the inverse 1)( −+ AI  has only positive 

diagonal elements (due to Theorem 3) and also satisfies (on account of Theorem 1): 
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Thus Lemma 2 is applicable and the matrix 1)( −+− AII  is row diagonally dominant 

with positive diagonal elements. 

Likewise, if A is column diagonally dominant with positive diagonal elements then so 

is AI + , whose inverse 1)( −+ AI  has only positive diagonal elements and satisfies: 
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Thus it follows that the matrix 1)( −+− AII  is column diagonally dominant with 

positive diagonal elements.  Q.E.D. 

 

 

Corollary 1. If ][ ija=A  is a nn×  row (resp., column) diagonally dominant matrix 

with positive diagonal elements and ][ id=D  is a nn×  positive diagonal matrix, then 

the matrix AADIDA 111 )()( −−− +=+  is also row (resp., column) diagonally 

dominant with positive diagonal elements. 

 

Proof. If A is a row diagonally dominant matrix with positive diagonal elements and 

D is a positive diagonal matrix, then by successive use of Lemma 1, Theorem 4, and 

again Lemma 1 we have that the matrices DA, 11 ))(( −− + IDA , and 
11111 )())(( −−−−− +=+ DAIDAD  are also row diagonally dominant with positive 

diagonal elements. 

In a similar manner, if A is column diagonally dominant with positive diagonal 

elements, then the matrices AD, 11 ))(( −− + IAD , and 11111 )())(( −−−−− +=+ DADIAD  

are also column diagonally dominant with positive diagonal elements.  Q.E.D. 

 

 

Theorem 5. If ][ ija=A  is a nn×  – row or column – diagonally dominant matrix 

with positive diagonal elements, then for the matrix 1)( −+= AIB  it holds 
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If A is – row or column – diagonally dominant with positive diagonal elements, then 

it follows from Theorem 2 that 0)(Re >Akλ , nk ,...,1=∀ . This gives: 
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or finally 1)( <Bρ .  Q.E.D. 
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