| Subject Area | Software and Information System Engineering |
|---|---|
| Semester | Semester 8 – Spring |
| Type | Elective |
| Teaching Hours | 4 |
| ECTS | 6 |
| Prerequisites |
|
| Course Director |
|

| Scientific Responsible | Stamoulis Georgios, ProfessorE-mail: georges@uth.gr |
|---|---|
| Title | Hellenic Chips Competence Centre (HCCC) |
| Funding Agency | Το HCCC υποστηρίζεται από το Chips JU και τα μέλη του, και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση και την Ελληνική Κυβέρνηση μέσω του προγράμματος “Ανταγωνιστικότητα” |
| Budget | 326.350,00 |
| Duration | 01/06/2025 – 31/05/2029 |
| Scientific Responsible | Plessas Fotios, ProfessorE-mail: fplessas@uth.gr |
|---|---|
| Title | Αναλογικός Σχεδιασμός, Δοκιμές και Επαλήθευση |
| Funding Agency | NanoZeta Technologies ltd. |
| Budget | 271.400,00 |
| Duration | 26/01/2021 – 25/01/2028 |
| Scientific Responsible | Korakis Athanasios, ProfessorE-mail: korakis@uth.gr |
|---|---|
| Title | DIGITAfrica: Towards a comprehensive pan-African research infrastructure in Digital Sciences |
| Funding Agency | ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ |
| Budget | 123.125,00 |
| Duration | 16/12/2024 – 31/12/2027 |
| Department of Electrical and Computer Engineering | |
|---|---|
| |
| Tel. | +30 24210 74967, +30 24210 74934 |
| gece ΑΤ uth.gr | |
| PGS Tel. | +30 24210 74933 |
| PGS e-mail | pgsec ΑΤ uth.gr |
| URL | https://www.e-ce.uth.gr/contact-info/?lang=en |
| Subject Area | Software and Information System Engineering |
|---|---|
| Semester | Semester 8 – Spring |
| Type | Elective |
| Teaching Hours | 4 |
| ECTS | 6 |
| Prerequisites |
|
| Course Director |
|
Introduction to data warehouses. Design, implementation and use of data warehouses. Multidimensional data model. Data cube and its processing. On-Line Analytical Processing (OLAP) in data warehouses. Differences between OLTP (On-line Transaction Processing) and OLAP. Data transfer from existing databases – procedures of extraction, transformation and loading (ETL). Processing of queries in data warehouses. Introduction to data mining. Data preprocessing. Data mining primitives, languages, and system architectures. Concept description: characterization and comparison. Mining association rules in large databases. Classification and prediction. Clustering. Mining data of complex type, e.g. text, images, web data.
Through this course, a student is expected to:
